A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
Answer:
The mass of 2,50 moles of NaCl is 146, 25 g.
Explanation:
First we calculate the mass of 1 mol of NaCl, starting from the atomic weights of Na and Cl obtained from the periodic table. Then we calculate the mass of 2.50 moles of compound, making a simple rule of three:
Weight NaCl= Weight Na + Weight Cl= 23 g+ 35,5 g= 58, 5 g/ mol
1 mol ------ 58, 5 g
2,5 mol---x= (2,5 mol x 58, 5 g)/ 1 mol = <u>146, 25 g</u>
Answer:
The filter bed is cleaned by occasional backwashing ;-; im sorry if this isn't a great answer but I tried
First, calculate for the amount of heat used up for increasing the temperature of ice.
H = mcpdT
H = (18 g)*(2.09 J/g-K)(50 K) = 1881 J
Then, solve for the heat needed to convert the phase of water.
H = (1 mol)(6.01 kJ/mol) = 6.01 kJ = 6010 J
Then, solve for the heat needed to increase again the temperature of water.
H = (18 g)(4.18 J/gK)(70 k)
H = 5266.8 J
The total value is equal to 13157.8 J
Answer: 13157.8 J