Answer:
Density of aluminum is 2.699 g/cm^3
Explanation:
Density of a given material can be defined as the mass of the substance present in a unit volume. Mathematically it can be expressed as:

Units: g/cm^3 or kg/m^3
Aluminum (Al) is one the lightest element and is known to have a density of 2.699 g/cm^3
Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.