Answer:
Therefore, we conclute that the map distance between A and C is 35 m.u..
Step-by-step explanation:
We know that the order of three loci is A B C, and the map distance between A and B is 15 m.u., and the map distance between B and C is 20 m.u. We calculate the map distance between A and C.
Therefore, we get

Therefore, we conclute that the map distance between A and C is 35 m.u..
Answer:
A B and D
Step-by-step explanation:
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Parallel means that the two equations have the same slope,
so we have y = 8x + b so far.
Then we can just apply the slope to the given point by taking the y value and decreasing it by 40, due to the x value being 5
So in short, the equation that runs parallel to y = 8x-8 and intersect the point (5,2) is y = 8x -38
Answer:
vertex = (- 5, - 8)
Step-by-step explanation:
Given a quadratic in standard form : ax² + bx + c = 0 : a ≠ 0
Then the x- coordinate of the vertex is
= - 
Given x² + 10x = - 17 ( add 17 to both sides )
x² + 10x + 17 = 0 ← in standard form
with a = 1, b = 10, c = 17, then
= -
= - 5
Substitute x = - 5 into the quadratic for the corresponding value of y
y = (- 5)² + 10(- 5) + 17 = 25 - 50 + 17 = - 8
Hence vertex = (- 5, - 8)