Answer:
Hence, the relation R is a reflexive, symmetric and transitive relation.
Given :
A be the set of all lines in the plane and R is a relation on set A.

To find :
Which type of relation R on set A.
Explanation :
A relation R on a set A is called reflexive relation if every
then
.
So, the relation R is a reflexive relation because a line always parallels to itself.
A relation R on a set A is called Symmetric relation if
then
for all
.
So, the relation R is a symmetric relation because if a line
is parallel to the line
the always the line
is parallel to the line
.
A relation R on a set A is called transitive relation if
and
then
for all
.
So, the relation R is a transitive relation because if a line
s parallel to the line
and the line
is parallel to the line
then the always line
is parallel to the line
.
Therefore the relation R is a reflexive, symmetric and transitive relation.
I believe it’s 140 maybe.
Answer:
A) 8, 15, 17.
Step-by-step explanation:
Right triangle obey the Pythagorean theorem. Thus, we choose the two smaller numbers (being the cathetus) and if after applying the P. Theorem we get the biggest of each option (the hypotenuse) that means that those numbers could be the sides of a right triangle.
The Pythagorean theorem states that: 
Thus:

Option A:
→ 17 = 17 OK!
Option B:
→ 10 ≠ 12 NO
Option C:
[/tex] →
≠ 21 NO
Option D:
→
≠ 16 NO
I believe C. I’m not completely sure tho...
The answer to the question is A