P1/T1 = P2/T2
125⁰C = 398.15 k
182⁰C = 455.15 k
1.22/398.15 = p2/455.15
p2= 1.39atm
the pressure of the gas be after the temperature change is 1.39 atm
Answer:
C. A reaction that absorbs heat
Explanation:
I do not know Latin, but roughly speaking 'Endo' means inside, and 'thermic' means heat.
Answer:
Explanation:
We usually approximate the density of water to about at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about . For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at , and the density at this point is exactly .
Answer:
A planet's <u>hydrosphere</u> can be<u> liquid</u>, <u>vapor</u>, or <u>ice</u>. On Earth, in the places at the <u>north and south pole</u>, water exists in ice or glacier form, in the <u>atmosphere</u> it exists in vapor form and liquid water exists on the <u>surface</u> in the form of oceans, lakes and rivers. It also exists below ground as <u>groundwater</u>, in wells and aquifers. Water collects in clouds, then falls to Earth in the form of <u>rain or snow</u>,
<em>Hope it helps</em>
<em>:D</em>
<em />