<u>Answer:</u> The longest wavelength of light is 656.5 nm
<u>Explanation:</u>
For the longest wavelength, the transition should be from n to n+1, where: n = lower energy level
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 
= Lower energy level = 2 (Balmer series)
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the longest wavelength of light is 656.5 nm
Answer:
Any of the six chemical elements that markup group1
of the periodic table.
Explanation:
Answer:
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Explanation:
2HBr(aq)+Ba(OH)2(aq)⟶2H2O(l)+BaBr2(aq)
We break the compounds into ions. Only compounds in the aqueous form can be turned into ions.
The ionic equation is given as;
2H⁺(aq) + 2Br⁻(aq) + Ba²⁺(aq) + 2OH⁻(aq) --> 2H2O(l) + Ba²⁺(aq) + 2Br⁻(aq)
Upon eliminating the spectator ions; The net equation is given as;
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Azeotropic mixture. I think