Answer:
the modulus of a complex number z = a + bi is:
Izl= √(a²+b²)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nl = 3√10
√(a² + b²+ 2²+ 6²)= 3√10
√(a^2 + b^2 + 40) = 3√10
squaring both side
a²+b²+40 = 3^2*10 = 9*10 =90
a²+b²= 90 - 40
a²+b²=50
So,
|n|=√(a^2 + b^2) = √50
The modulus of n must be equal to the square root of 50.
now
values a and b such
a^2 + b^2 = 50.
for example, a = 5 and b = 5
5²+5²=25+25= 50
Then a possible value for n is:
n = 5+5i
Answer:
16428 oranges
Explanation:
Total yield = number of trees × number of oranges in each tree
Initial yield = 600×24= 14400 oranges
To find the equation needed, let x = additional trees and y= total yield
Number of trees = 24 +x
Number of oranges in each tree = 600-12x
Equation of total yield y= (24+x)(600-12x)
y= 14400-288x+600x-12x²
y= -12x²+312x+14400
Using a graphing calculator, from the graph drawn for this quadratic equation, we notice that it is a parabola. Therefore to find the maximum value, we should find the maximum point which is at the vertex of the parabola, we use the formula x= -b/2a
A quadratic equation is such: ax²+bx+c
Therefore x =-312/2×-12
x= -312/-24
x= 13
So we can conclude that in order to maximise oranges from the trees, the person needs to plant an additional 13 trees. Substituting from the above:
24+x=24+13= 37 trees in total
y= -12x²+312x+14400= -12×13²+312×13+14400= -2028+4056+14400
=16428 oranges in total yield
A]
Amount of earning per hour=$8.59
Amount of David's benefits=18/100×8.59=:1.5462
Amount that David earn per hour including benefits is given by:
8.59+1.5462=$10.1362
b]Amount that David earns in 35 hour a week will be:
(amount per hour)*(number of hours)
=8.59*35
=$$300.65
C] amount earned by David including benefits will be:
(amount earned in 35 hours)+(total benefits in 35 hours)
total benefits=1.5462×35=$54.117
thus total amount will be:
300.65+54.117
=$354.767
Larger number is 32 because if u take 48 minus 16 u get your anwser