Answer:
it is True as the operational definition of electric current.
Explanation:
The definition of electric current is
I = dQ / dt
By convention the direction of the current is the direction in which a positive charge flows.
The initial expression is the derivative that is the change of the load in the unit of time and this occurs in a given cross-sectional cable.
The proposed definition is the same as this, so it is True as the operational definition of electric current.
Answer:
It would take the object 5.4 s to reach the ground.
Explanation:
Hi there!
The equation of the height of a free-falling object at any given time, neglecting air resistance, is the following:
h = h0 + v0 · t + 1/2 · g · t²
Where:
h = height of the object at time t.
h0 = initial height.
v0 = initial velocity.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
t = time
Let´s supose that the object is dropped and not thrown so that v0 = 0. Then:
h = h0 + 1/2 · g · t²
We have to find the time at which h = 0:
0 = 470 ft - 1/2 · 32.2 ft/s² · t²
Solving for t:
-470 ft = -16.1 ft/s² · t²
-470 ft / -16.1 ft/s² = t²
t = 5.4 s
Answer:
I am fairly certain the answer is 2m/s^2
Explanation:
Answer:
1) Measuring cylinder
2) Top Pan Balance
Explanation:
To find the density of the pebble Nabil should first accurately measure the mass of the pebble using the top pan balance
He should then fill the displacement can till the water reaches the outlet pipe at the to of the cylinder
He should then place the pebble into the cylinder carefully ans allow the water that would start coming out to stop
The volume of water in the displaced cylinder is then measured and the density is found by dividing the mass of the pebble by the volume of water in the measuring cylinder
