Answer;
<u>= 56.96 mA</u>
Explanation;
From the Ohm's law;
V = IR, where V is the potential difference in volts, I is the electric current in amperes and R is the resistance in ohms.
V = 4.5 volts, R = 79 Ω
Making I the subject of the formula we get;
I =V/R
= 4.5 /79
= 0.05696 A
But, 1 A = 1000 mA
Thus; 0.05696 × 1000
<u>= 56.96 mA</u>
Answer:
9.8N
Explanation:
Here we can get gravitational acceleration according to the place where object is placed by bellow equation
g = GM/R²
g - Gravitational Acceleration
G - Gravitational constant (6.67×10-11)
R - Distance ( Radius )
g = 6.67 × 10-11 × 1024 /(6.37×106)²
g = 9.8 m/s²
There for
Weight = Mass × Gravitational acceleration
= 1×9.8
= 9.8 N
Answer:
DETAILS IN THE QUESTION INSUFFICIENT TO ANSWER
Explanation:
Assuming the liquid to be water ,
the density of water is :
Buoyant force exerted by a liquid on an object with of it's volume immersed is :
where ,
- is the buoyant force
- is the density of the liquid
- is the acceleration due to gravity
Thus at equilibrium:
from these , we get the density of brass to be
which is not possible
Answer:
19 N
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 1.9 kPa
Length (L) = 10 cm
Force (F) =?
Next, we shall convert 1.9 KPa to N/m². This can be obtained as follow:
1 KPa = 1000 N/m²
Therefore,
1.9 KPa = 1.9 KPa × 1000 N/m² / 1 KPa
1.9 KPa = 1900 N/m²
Thus, 1.9 KPa is equivalent to 1900 N/m².
Next, we shall convert 10 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Thus, 10 cm is equivalent to 0.1 m
Next, we shall determine the area of the square. This can be obtained as follow:
Length (L) = 0.1 m
Area of square (A) =?
A = L²
A = 0.1²
A = 0.01 m²
Thus, the area of the square is 0.01 m².
Finally, we shall determine the force that must be exerted on the sensor in order for it to turn red. This can be obtained as follow:
Pressure (P) = 1900 N/m²
Area (A) = 0.01 m²
Force (F) =?
P = F/A
1900 = F / 0.01
Cross multiply
F = 1900 × 0.01
F = 19 N
Therefore, a force of 19 N must be exerted on the sensor in order for it to turn red.
Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0
From the figure, you can observe that a/b < 1, thus E < W