B. A new material is formed
Explanation:
A point of temperature at which both solid and liquid state of a substance remains in equilibrium without any change in temperature then this temperature is known as melting point.
For example, melting point of water is
. So, at this temperature solid state of water and liquid state are present in equilibrium with each other.
Therefore, when a 100 g of given pure metal in solid state is heated at its exact melting point which is
then some of the solid will change into liquid state but the temperature will remains the same.
Answer:
The steps with correct mechanism are given below:
C
1) CH₄(g) + Cl(g) → CH₃(g) + HCl(g) : This is a slow step.
The rate is given as: R1 = k₁[CH₄][Cl]
2) CH₃(g) + Cl₂(g) → CH₃Cl(g) + Cl(g): This is a fast step.
The rate is given as: Rate = k₂[CH₃][Cl₂]
∴ CH₄(g) + Cl₂(g) → CH₃Cl(g) + HCl(g)
Here, the slowest step will be the rate-determining step.
The formal charges of all nonhydrogen atoms are -1.
Solution:-
<u>O 7-4 = 3 O Double bond on one H 5-4 = 1</u>
O-Cl-O 6-7 = -1x4 = -4 N 5-4=1 H-N-H 1-1=0
O 3-4= -1 O O 6-7 = -1(2)=-2 H 1-0=+1
<u>6-6 = 0 1-2 = -1</u>
It will percentage its last valence electron thru a single bond to the terminal oxygen atom. This is in agreement with carbon and hydrogen atoms that each need to form 4 and 1 covalent bonds respectively. because the terminal oxygen atom best has a single covalent bond, it'll have a proper rate of -1.
According to the lewis structure of SO2, The critical atom is sulfur and it is bonded with 2 oxygen atoms thru a double bond. each oxygen atom acquires 2 lone pairs of electrons and the primary sulfur atom has 1 lone pair of electrons.
Learn more about Nonhydrogen atoms here:-brainly.com/question/2822744
#SPJ4