Liquids state than in the solid state because when it is solid the particals cant move as much than in the liquid state
Explanation:
The expression is :

A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
![A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}](https://tex.z-dn.net/?f=A%3DB%5EnC%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3D%5BL%5E2T%5E%7B-1%7D%5D%5En%5BLT%5E2%7D%5D%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%7DT%5E%7B-n%7DL%5EmT%5E%7B2m%7D%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%2Bm%7DT%5E%7B2m-n%7D)
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :

Hence, the correct option is (E).
Designing warning and evacuation systems could be a step in a plan designed to mitigate the negative impacts of a natural hazard.
Answer:
2: Condensation. 4: 1,d; 2,c; 3,a; 4,e;5,b.
Explanation:
Answer:
∑F = 10.2 N
Explanation:
We have:
Initial velocity: 0.5 m/s
Final velocity: 3 m/s
Time: 1.5 s
We have all of the components needed to calculate acceleration. Let's do that, shall we?
a = vf-vo/t
a = 2.5/1.5
a = 1.7
/
Now, look at the Net Force equation:
∑F = ma
Plug in the variables, to get:
∑F = (6)(1.7)
∑F = 10.2 N (You can round this according to significant digits)