Answer:
The question was incomplete. Here is the complete question.
Explanation:
A helium-filled balloon escapes a child’s hand at sea level and 20.0C. When it reaches an altitude of 3600 m, where the temperature is 5.0∘C and the pressure only 0.68 atm, how will its volume compare to that at sea level?
The ideal gas equation:

P = absolute pressure
V = Volume of a gas
n = no of moles of a gas
R = ideal gas constant
T = Absolute temperature of a gas
For initial and final states:

= 1.4
Answer:
<h2>103 Joules</h2>
Explanation:
In this problem we are required to find the potential energy possessed by the television
Given data
mass of television m = 15 kg
height added above the ground, h= 1-0.3 = 0.7 m
acceleration due to gravity g = 9.81 m/s^2
apply the formula for potential energy we have
P.E= m*g*h
P.E = 15*9.81*0.7 = 103 Joules
Answer:
Explanation:
mass of the fellow ( m ) = 66kg
acceleration of fellow a
v = u + at
4.5 = 0 + a x 2
a = 4.5 /2
= 2.25 m / s²
Net force acting on fellow in upward direction by the surface of elevator
R - mg where R is reaction force of the surface of the elevator
Applying Newton's law of motion
R - mg = ma
R = m (g +a )
= 66 x ( 9.8 + 2 )
= 778.8 N
This will be the scale reading .
Answer is on the image with the explanation. I hope that might help you with the answers
Answer:
Explanation:
net force on the skier = mg sin 39 - μ mg cos39
mg ( sin39 - μ cos39 )
= 73 x 9.8 ( .629 - .116)
= 367 N
impulse = net force x time = change in momentum .
= 367 x 5 = 1835 kg m /s
velocity of the skier after 5 s = 1835 / 73
= 25.13 m /s
b )
net force becomes zero
mg ( sin39 - μ cos39 ) = 0
μ = tan39
= .81
c )
net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s
so he will have speed of 25.13 m /s after 5 s .