Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:

Where:
: is the initial pressure = 5.79 atm
: is the final pressure =?
: is the initial volume = 420 cm³
: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:

Therefore, the work done by the gas is 305.3 J.
I hope it helps you!
Answer:
Beacause he has more grocceries and food heavy
Explanation:
Answer:
Magnification, m = -0.42
Explanation:
It is given that,
Height of diamond ring, h = 1.5 cm
Object distance, u = -20 cm
Radius of curvature of concave mirror, R = 30 cm
Focal length of mirror, f = R/2 = -15 cm (focal length is negative for concave mirror)
Using mirror's formula :
, f = focal length of the mirror


v = -8.57 cm
The magnification of a mirror is given by,


m = -0.42
So, the magnification of the concave mirror is 0.42. Thew negative sign shows that the image is inverted.