Answer:
a-
V= IR
9V = I ×( 12+6)
I = 9/ 18 A = 0.5 A
b
V=IR
240 = 6 A ×( 20 + R)
40 = 20 + R
R = 20 ohm
c
resultant resistance of the 2 parallel resistances= Ro
1/Ro = 1/ 5 + 1/ 20
1/Ro =( 20+5)/100
= 1/Ro = 1/4
Ro= 4 ohm
V=IR
V = 2A × ( 1+ 4 OHM)
V = 10V
d
equivalent resistance = Ro
1/Ro = 1/(2+8) + 1/(5+5)
1/Ro = 1/10 +1/10
2/10 = 1/ Ro
Ro= 10/2 = 5 ohm
V = IR
12V = I × 5Ohm
I=2.4 A
<h2>Answer: The astronauts are falling at the same rate as the space shuttle as it orbits around earth</h2>
The astronauts seem to float because they are in free fall just like the spacecraft.
However, although they are constantly falling on the Earth, they do not fall because the ship orbits at a sufficient speed (in the same direction of rotation of the Earth) so that the centrifugal force is balanced with the Earth's gravitational pull.
In other words:
The spaccraft and the astronauts are in free fall but the Earth's surface will never be reached as long as they does not decrease the speed.
Then, as they accelerate toward Earth (regardless of their mass), it curves beneath them and never comes close.
That's why astronauts, having the same acceleration as the spacecraft, feel weightless and see themselves floating.
Answer:
C. Fill two identical pots with equal volumes of salt water and tap water and use a stopwatch to determine the time it takes each pot to boil.
Explanation:
<u>A) is incorrect</u> because Peter should have the same testing environment for both of his experiments.
He should choose the same method of boiling the salt water and tap water because the stovetop and the microwave could also affect the results and make them unreliable.
<u>B) is incorrect</u> because Peter should not estimate the time it takes the salt water and tap water to boil.
Peter should measure and record the amount of time that it takes these substances to boil in order to have an accurate, valid experimental thesis.
<u>C) is correct</u> because Peter uses the same volume of salt water and tap water, fills them into two identical pots, and uses a stopwatch to determine the amount of time it takes each pot to boil.
The stopwatch makes the experiment more valid and accurate compared to the previous methods, and the identical pots and amounts of water help this experiment become even more precise.
<u>D) is incorrect</u> because the variables in the experiment are not controlled amounts and will therefore produce an inaccurate and invalid experiment.
Answer:
(A) Q = 321.1C (B) I = 42.8A
Explanation:
(a)Given I = 55A−(0.65A/s2)t²
I = dQ/dt
dQ = I×dt
To get an expression for Q we integrate with respect to t.
So Q = ∫I×dt =∫[55−(0.65)t²]dt
Q = [55t – 0.65/3×t³]
Q between t=0 and t= 7.5s
Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]
Q = 321.1C
(b) For a constant current I in the same time interval
I = Q/t = 321.1/7.5 = 42.8A.
<span>Each atom contains an equal number of protons and electrons; these particles will be equal in value to an element's atomic number</span>