<h3>
Answer: Largest value is a = 9</h3>
===================================================
Work Shown:
b = 5
(2b)^2 = (2*5)^2 = 100
So we want the expression a^2+3b to be less than (2b)^2 = 100
We need to solve a^2 + 3b < 100 which turns into
a^2 + 3b < 100
a^2 + 3(5) < 100
a^2 + 15 < 100
after substituting in b = 5.
------------------
Let's isolate 'a'
a^2 + 15 < 100
a^2 < 100-15
a^2 < 85
a < sqrt(85)
a < 9.2195
'a' is an integer, so we round down to the nearest whole number to get 
So the greatest integer possible for 'a' is a = 9.
------------------
Check:
plug in a = 9 and b = 5
a^2 + 3b < 100
9^2 + 3(5) < 100
81 + 15 < 100
96 < 100 .... true statement
now try a = 10 and b = 5
a^2 + 3b < 100
10^2 + 3(5) < 100
100 + 15 < 100 ... you can probably already see the issue
115 < 100 ... this is false, so a = 10 doesn't work
Line parallel to y=x+11 so slopes are equal then
y= x+b
Passing through the point C (-6;2) then C belongs to this line
yc=xc+b
b= 6+2
b= 8
So y intercept is equal to 8
Answer:
D. y=-3x+8
Step-by-step explanation:
first, get the 12x on the other side of the equation
12x+4y-12x=32-12x
4y=-12x+32
divide the equation by four
y=-3x+8
Hope this helps!
Answer:
255.75 feet or 255
feet
Step-by-step explanation:
area of a rectangle / length = breadth
1023 / 4 = 255.75 or 255
feet
F(3k)=3k +7 Equals 9k+7. So 9k+7 would be the Answer.