Answer:
the answer is D
Step-by-step explanation:
Answer:
for 1 it is the 3rd graph
Step-by-step explanation:
hi
monthly interest rate is : ![\sqrt[12]{1.05}](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B1.05%7D)
So in forty month there will be : 10 000 * (
)^40 ≈11 776,06
They are traveling at right angles to each other so we can say one is traveling north to south and the other west to east. Then we can say that there positions, y and x are:
y=150-600t x=200-800t
By using the Pythagorean Theorem we can find the distance between these two planes as a function of time:
d^2=y^2+x^2, using y and x from above
d^2=(150-600t)^2+(200-800t)^2
d^2=22500-180000t+360000t^2+40000-320000t+640000t^2
d^2=1000000t^2-500000t+62500
d=√(1000000t^2-500000t+6250)
So the rate of change is the derivative of d
dd/dt=(1/2)(2000000t-500000)/√(1000000t^2-500000t+6250)
dd/dt=(1000000t-250000)/√(1000000t^2-500000t+6250)
So the rate depends upon t and is not a constant, so for the instantaneous rate you would plug in a specific value of t...
...
To find how much time the controller has to change the airplanes flight path, we only need to solve for when d=0, or even d^2=0...
1000000t^2-500000t+62500=0
6250(16t^2-8t+1)=0
6250(16^2-4t-4t+1)=0
6250(4t(4t-1)-1(4t-1))=0
6250(4t-1)(4t-1)=0
6250(4t-1)^2=0
4t-1=0
4t=1
t=1/4 hr
Well technically, the controller has t<1/4 because at t=1/4 impact will occur :)
You need to work backwards
if it is no more than 9 units away from 8
thus x must be 8-9<x<8+9 solving -1<x<17
so the answer is 4.