E = hc/(lamda)
The lamda symbol is wavelength, which this site does not have. I can represent it with an "x" instead.
Plancks constant, h = 6.626×10^-32 J·s
Speed of light, c = 3.00×10^8 m/s
The energy must be greater than or equal to 1×10^-18 J
1×10^-18 J ≤ (6.626×10^-32 J·s)*(3.0×10^8 m/s) / x
x ≤ (6.626×10^-32 J·s)*(3.0×10^8 m/s) / (1×10^-18 J)
x ≤ 1.99×10^-7 m or 199 nm
The wavelength of light must be greater than or equal to 199 nm
True. Because they are white we know that they reflect light, and thus heat.
Energy can be conserved by efficient energy use.
Answer: Option A
<u>Explanation:</u>
Energy can be transferred from one form to another, but it cannot be destroyed or created. So it can be conserved if efficiently used. Thus efficient usage of energy lead to conservation of energy. Due to conservation of energy, the forces can be renewable and non-renewable.
So, we should know how the input energy can be completely converted to another form of energy leading to efficient usage of energy without any loss. As if there is no loss, input energy will be equal to output energy leading to 100% efficiency.
To communicate the results in an organized report
54g ag *(108mol ag/1 g ag) =5832mol ag