Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
<h3>
Answer:</h3>
4.3 miles
<h3>
Explanation:</h3>
We are given;
Distance of 22,704 feet
We are required to determine the number of miles in 22,704 feet
- To convert one unit to another we use conversion factors
- Therefore, we need to know the suitable conversion factor.
- That is, 1 mile/5,280 feet
- Thus, to determine the number of miles we multiply the number of feet with the conversion factor.
That is;
= 22,704 feet × 1 mile/5,280 feet
= 4.3 miles
Therefore, there are 4.3 miles in 22,704 feet
Answer:
Kc = 168.0749
Explanation:
initial mol: 0.822 0 0
equil. mol: 2(0.822 - x) x x
∴ [ HI ]eq = 0.055 mol/L = 2(0.822 - x) / (1.11 L )
⇒ 1.644 - 2x = 0.055 * 1.11
⇒ 1.644 = 2x + 0.06105
⇒ 2x = 1.583
⇒ x = 0.7915 mol equilibrium
⇒ [ H2 ] eq = 0.7915mol / 1.11L = 0.7130 M = [ I2 ] eq
⇒ Kc = ([ H2 ] * [ I2 ]) / [ HI ]²
⇒ Kc = ( 0.7130² ) / ( 0.055² )
⇒ Kc = 168.0749
It would be “To obey the law of conservation of mass”
Answer:
This addition reaction yields 3-BromoPentane and 2-BromoPentane.
Explanation: The reaction is an addition reaction that follows the Markonikoff's principle engaging the electrophillic addition mechnism with electrophile having no lone pair so rearrangement of carbonation is possible. It yields two possible products.