When a sodium atom transfers an electron to a chlorine atom, forming a sodium cation (Na+) and a chloride anion (Cl-), both ions have complete valence shells, and are energetically more stable. The reaction is extremely exothermic, producing a bright yellow light and a great deal of heat energy.
Answer:
A. Metallic bond
Explanation:
Think about it: copper and tin are both common metals. That's how we know it's a metallic bond!
Why not B: Covalent bonds are between two nonmetals.
Why not C: Ionic bonds are between a nonmetal and a metal.
Why not D: Paired bond isn't a common phrase in chemistry.
Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Chemical reactions that release energy will not occur without a source of energy. So the answer is release.