Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer:
6.9 (two sig figs)
Explanation:
2.375 + 4.5 = 6.875 = 6.9
When adding or subtracting, sig figs are determined by the least number of digits past the decimal point.
Answer:
0.0400M of KI
Explanation:
Molarity is an unit of concentration defined as the ratio between moles of solute and liters of solution.
When you add 10.0 mL of 0.10M KI and 15.0mL, total volume is:
25.0mL = <em>0.025L of solution</em>
<em />
And moles of KI are:
0.0100L × 0.10M = <em>0.00100 moles of KI</em>
<em />
Thus, molarity is:
0.00100 moles / 0.025L = <em>0.0400M of KI</em>
Answer:
The total amount of heat released is 68.7 kJ
Explanation:
Given that:
mass of water = 94.0 g
moles of water = 94 / 18.02 = 5.216
80⁰C ------> 0⁰C --------> -30⁰C
Q1 = m Cp dT
= 94 x 4.184 x (0 - 80)
= -31463.68 J
= -31.43 kJ
Q2 = 6.01 x 10^3 x 5.216
= - 31348.16 J
= -31.35 kJ
Q3 = - 94 x 2.09 x 30
= - 5893.8 J
= -5.894 kJ
Total heat = Q1 + Q2 + Q3 = -31.43 kJ + (-31.35 kJ ) + (-5.894 kJ
) = -68.7 kJ
Total heat released = -68.7 kJ
Note that the "negative sign" simply indicates heat released, therefore no need to put it in the answer.