Answer:
Mass = 2.89 g
Explanation:
Given data:
Mass of NH₄Cl = 8.939 g
Mass of Ca(OH)₂ = 7.48 g
Mass of ammonia produced = ?
Solution:
2NH₄Cl + Ca(OH)₂ → CaCl₂ + 2NH₃ + 2H₂O
Number of moles of NH₄Cl:
Number of moles = mass/molar mass
Number of moles = 8.939 g / 53.5 g/mol
Number of moles = 0.17 mol
Number of moles of Ca(OH)₂ :
Number of moles = mass/molar mass
Number of moles = 7.48 g / 74.1 g/mol
Number of moles = 0.10 mol
Now we will compare the moles of ammonia with both reactant.
NH₄Cl : NH₃
2 : 2
0.17 : 0.17
Ca(OH)₂ : NH₃
1 : 2
0.10 : 2/1×0.10 = 0.2 mol
Less number of moles of ammonia are produced by ammonium chloride it will act as limiting reactant.
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.17 mol × 17 g/mol
Mass = 2.89 g
Answer:
1.5 M.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.
<em>M = (no. of moles of LiBr)/(Volume of the solution (L).</em>
<em></em>
∵ no. of moles of LiBr = (mass/molar mass) of LiBr = (97.7 g)/(86.845 g/mol) = 1.125 mol.
Volume of the solution = 750.0 mL = 0.75 L.
∴ M = (no. of moles of luminol)/(Volume of the solution (L) = (1.125 mol)/(0.75 L) = 1.5 M.
Answer:
The solution is basic.
Explanation:
We can determine the nature of the solution via determining which has the large no. of millimoles (acid or base):
- If no. of millimoles of acid > that of base; the solution is acidic.
- If no. of millimoles of acid = that of base; the solution is neutral.
- If no. of millimoles of acid < that of base; the solution is basic.
- We need to calculate the no. of millimoles of acid and base:
no. of millimoles of acid (HNO₃) = MV = (1.3 M)(75.0 mL) = 97.5 mmol.
no. of millimoles of base (NaOH) = MV = (6.5 M)(150.0 mL) = 975.0 mmol.
<em>∴ The no. of millimoles of base (NaOH) is larger by 10 times than the acid (HNO₃).</em>
<em>So, the solution is: basic.</em>
<span>The student is incorrect because helium has 2 valence electrons and it's in group 18 because the first energy level is full. Although helium is placed in Group 18 which generally has 8 valence electrons, it does not have 8 valence electrons as the student suggested. It was grouped together with the noble gases because it exhibits similar properties with them. </span>