Answer:
The positive displacement from the midpoint of its motion at the speed equal one half of its maximum speed is 3.56 cm.
Explanation:
Maximum speed is :
v (max) = Aω
Speed v at any displacement y is given by
=
(
-
) ........................................................ i
And,
v =
v (max)
or, 2 × v = Aω .................................................... ii
Eliminating ω from equations i and ii,
=
(
-
)
or,
= (
)
=(
) 
or, y = 3.56 cm.
Answer:
time = 8.3333 minutes.
Explanation:
distance between earth and sun = 1.5 * 
speed of light = 3* 
convert the distance unit from km to m so we can have uniform units.
distance between earth and sun = 1.5 *
m
distance between earth and sun = 1.5 *
m
speed = distance /time
time = distance / speed
time = 

time =500 sec
time = 500/60 minutes
time = 8.3333 minutes.
Answer:
Intensity, 
Explanation:
Power of the light bulb, P = 40 W
Distance from screen, r = 1.7 m
Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :




So, the intensity of light is
.
Answer:
a) 600 meters
b) between 0 and 10 seconds, and between 30 and 40 seconds.
c) the average of the magnitude of the velocity function is 15 m/s
Explanation:
a) In order to find the magnitude of the car's displacement in 40 seconds,we need to find the area under the curve (integral of the depicted velocity function) between 0 and 40 seconds. Since the area is that of a trapezoid, we can calculate it directly from geometry:
![Area \,\,Trapezoid=(\left[B+b]\,(H/2)\\displacement= \left[(40-0)+(30-10)\right] \,(20/2)=600\,\,m](https://tex.z-dn.net/?f=Area%20%5C%2C%5C%2CTrapezoid%3D%28%5Cleft%5BB%2Bb%5D%5C%2C%28H%2F2%29%5C%5Cdisplacement%3D%20%5Cleft%5B%2840-0%29%2B%2830-10%29%5Cright%5D%20%5C%2C%2820%2F2%29%3D600%5C%2C%5C%2Cm)
b) The car is accelerating when the velocity is changing, so we see that the velocity is changing (increasing) between 0 and 10 seconds, and we also see the velocity decreasing between 30 and 40 seconds.
Notice that between 10 and 30 seconds the velocity is constant (doesn't change) of magnitude 20 m/s, so in this section of the trip there is NO acceleration.
c) To calculate the average of a function that is changing over time, we do it through calculus, using the formula for average of a function:

Notice that the limits of integration for our case are 0 and 40 seconds, and that we have already calculated the area under the velocity function (the integral) in step a), so the average velocity becomes:

Answer:
2m/s²
Explanation:
velocity = displacement (distance in a specified direction /time