Answer:
691200 J
Explanation:
From specific heat capacity,
ΔQ = cmΔt.................. Equation 1
Where ΔQ = increase in thermal energy, c = specific heat capacity of the body, m = mass of the man, Δt = rise in temperature.
Given: c = 3.6 kJ/kg.°C = 3600 J/kg.°C, m = 96 kg, Δt = 39-37 = 2 °C.
Substitute into equation 1
ΔQ = 3600×96×2
ΔQ = 691200 J.
Hence the change in the thermal energy of the body = 691200 J
A prediction is a guess of something happening in the future.
Omitting the 1 will not change the value of the number, but will change the units at the end of the problem
Answer:
I don't know what you're asking, but I will try my best.
If Susan fertilizes her geranium plants, it will help them blossom. If she over-fertilizes them though, they will die. But yes, in general, they will blossom if Susan fertilizes her geranium plants.
Answer:
a) F_b = 6.62 N
b) F_net = 5.583 N
Explanation:
Given:
- Conditions of He gas: T = 0 C , P = 1 atm , ρ = 0.179 kg/m^3
- The mass of balloon m = 0.012 kg
- The radius of balloon r = 0.5 m
Find:
a)What is the magnitude of the buoyant force acting on the balloon?
b)What is the magnitude of the net force acting on the balloon?
Solution:
- The buoyant force F_b acting on the balloon is equal to the weight of the air it displaces.The mass of the displaced air ρ*V is the volume of the balloon times the density of the. Multiplying that by acceleration due to gravity gives its weight.
F_b = ρ*V*g
F_b = 4*ρ*g*pi*r^3 / 3
F_b = 4*1.29*9.81*pi*.5^3 / 3
F_b = 6.62 N
- The net force will be the difference between the balloon’s weight and the buoyant force. The weight of the balloon is the density of the helium times the volume of the balloon added to the mass of the empty balloon.
F_g = ρ*V*g + m*g
F_g = 4*ρ*g*pi*r^3 / 3 + 0.012*9.81
F_g = 4*0.179*9.81*pi*.5^3 / 3 + 0.012*9.81
F_g = 1.037 N
- The net force is the difference between weight and buoyant force
F_net = F_g - F_b
F_net = 6.62 - 1.037
F_net = 5.583 N