As soon as I read this, the words "law of cosines" popped
into my head. I don't have a good intuitive feeling for the
law of cosines, but I went and looked it up (you probably
could have done that), and I found that it's exactly what
you need for this problem.
The "law of cosines" relates the lengths of the sides of any
triangle to the cosine of one of its angles ... just what we need,
since we know all the sides, and we want to find one of the angles.
To find angle-B, the law of cosines says
b² = a² + c² - 2 a c cosine(B)
B = angle-B
b = the side opposite angle-B = 1.4
a, c = the other 2 sides = 1 and 1.9
(1.4)² = (1)² + (1.9)² - (2 x 1 x 1.9) cos(B)
1.96 = (1) + (3.61) - (3.8) cos(B)
Add 3.8 cos(B) from each side:
1.96 + 3.8 cos(B) = 4.61
Subtract 1.96 from each side:
3.8 cos(B) = 2.65
Divide each side by 3.8 :
cos(B) = 0.69737 (rounded)
Whipping out the
trusty calculator:
B = the angle whose cosine is 0.69737
= 45.784° .
Now, for the first time, I'll take a deep breath, then hold it
while I look back at the question and see whether this is
anywhere near one of the choices ...
By gosh ! Choice 'B' is 45.8° ! yay !
I'll bet that's it !
<em>Greetings from Brasil...</em>
According to the statement of the question, we can assemble the following system of equation:
X · Y = - 2 i
X + Y = 7 ii
isolating X from i and replacing in ii:
X · Y = - 2
X = - 2/Y
X + Y = 7
(- 2/Y) + Y = 7 <em>multiplying everything by Y</em>
(- 2Y/Y) + Y·Y = 7·Y
- 2 + Y² = 7X <em> rearranging everything</em>
Y² - 7X - 2 = 0 <em>2nd degree equation</em>
Δ = b² - 4·a·c
Δ = (- 7)² - 4·1·(- 2)
Δ = 49 + 8
Δ = 57
X = (- b ± √Δ)/2a
X' = (- (- 7) ± √57)/2·1
X' = (7 + √57)/2
X' = (7 - √57)/2
So, the numbers are:
<h2>
(7 + √57)/2</h2>
and
<h2>
(7 - √57)/2</h2>
The simplified expression of
is
.
Solution:
Given expression is
.
To simplify the given expression.

Using exponent rule: 

Using another exponent rule: 


Using exponent rule: 


Hence the simplified expression of
is
.
Answer:
32ft by 20ft
Step-by-step explanation:
8x4 and 5x4