The X and Y components of the force are 90.63 Newton and 42.26 Newton respectively.
<u>Given the following data:</u>
- Angle of inclination = 25°
To determine the X and Y components of the force:
<h3>The horizontal component (X) of a force:</h3>
Mathematically, the horizontal component of a force is given by this formula:

Fx = 90.63 Newton.
<h3>The vertical component (Y) of tensional force:</h3>
Mathematically, the vertical component of a force is given by this formula:

Fy = 42.26 Newton.
Read more on horizontal component here: brainly.com/question/4080400
B) not work ,because the water would freeze
Answer:
<em>The distance is now 4d</em>
Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The acceleration can be calculated by solving for a:

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

If the block starts from rest, vo=0:

Substituting the value of the acceleration:

Simplifying:

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

And the distance is now:

Dividing d'/d:

Simplifying:

Thus:
d' = 4d
The distance is now 4d
Answer:
Explanation:
To solve this problem we use the Hooke's Law:
(1)
F is the Force needed to expand or compress the spring by a distance Δx.
The spring stretches 0.2cm per Newton, in other words:
1N=k*0.2cm ⇒ k=1N/0.2cm=5N/cm
The force applied is due to the weight

We replace in (1):
We solve the equation for m:
<em>Answer:</em>
<em>When </em><em>a </em><em>body </em><em>is </em><em>moving </em><em>on </em><em>a </em><em>circle </em><em>it </em><em>is </em><em>accelerating </em><em>because </em><em>centripetal </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>it </em><em>towards </em><em>the </em><em>center.</em>
<em>Please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em>
<em>From </em><em>the </em><em>above </em><em>diagram,</em><em>we </em><em>can </em><em>say </em><em>the </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>the </em><em>body </em><em>when </em><em>it </em><em>moves </em><em>in </em><em>a </em><em>circle.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>