1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
3 years ago
9

What value can you multiply by 3/4 to get a product of 1

Mathematics
1 answer:
Rus_ich [418]3 years ago
4 0
Multiply by the reciprocal, 4/3
You might be interested in
The expression f(x) = 12(1.035)* models the monthly growth of membership in the new drama club at a school. According to the fun
olga nikolaevna [1]

Answer:

The monthly growth rate is 3.5%.

Step-by-step explanation:

The exponential growth function is given as follows:

y=a(1+r)^{x}

Here,

<em>y</em> = final value

<em>a</em> = initial value

<em>r</em> = growth rate

<em>x</em> = time taken

The provided expression for the monthly growth of membership in the new drama club at a school is:

f(x) = 12\cdot(1.035)^{x}

Comparing this function with the exponential growth function:

a(1+r)^{x}=12(1.035)^{x}\\\\a(1+r)^{x}=12(1+0.035)^{x}

Then value of <em>r</em> is 0.035 or 3.5%.

Thus, the monthly growth rate is 3.5%.

7 0
3 years ago
Find the slope of the line (Image attached)<br><br> A) 5<br> B) -5<br> C) 1/5<br> D) -1/5
Inessa [10]
The slope is 1/5 as [rise/run]
7 0
3 years ago
Read 2 more answers
Find x 6787+x=99798999?<br><br><br> dom join my remind ......28gc97d
wolverine [178]

Answer:

x=99792212

Step-by-step explanation:

get the x alone by subtracting 6787 from both sides

6787-6787+x=99798999-6787

x=99792212

Hope this helps!

5 0
2 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
How can i solve (-4,7) , (-6,-4)
pishuonlain [190]

Answer:

(-6) - 7 and -6 - (-4)

Step-by-step explanation:

you have to find the rate of change.

this equals -13/4=3.25

5 0
3 years ago
Other questions:
  • Lana makes $8 an hour plus $12 an hour for every hour of overtime. Overtime hours are any hours more than 40 hours for the week.
    13·1 answer
  • There are 50 students on the tennis team. Twenty students play only singles, and Twenty four students play both singles and doub
    5·1 answer
  • 15. Look at the following number sequence.
    10·1 answer
  • Is 2/3 bigger than 3/5
    6·2 answers
  • Hi i hope ur sunday is going well. Please help me with this answer
    12·2 answers
  • If that is = a, find the value of a + 1 over a<br><img src="https://tex.z-dn.net/?f=3%20-%20%20%5Csqrt%7B5%7D%20" id="TexFormula
    13·1 answer
  • Dejah is proving that perpendicular lines have slopes that are opposite reciprocals. She draws line s and labels two points on t
    10·2 answers
  • Please help asap tell me if you cant open the document
    9·2 answers
  • Leila bought 4 CDs that were each the same price. Including sales tax, she paid a total of 58.80. Each CD had a tax of 0.90. Wha
    14·1 answer
  • PLEASE SHOW YOUR WORK AND HOW YOU GOT IT Valerie swam one lap in S seconds, faster than Peter by 4 seconds. Which of the followi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!