Answer:
0.2932 rad/s
Explanation:
r = Radius = 2 m
= Initial angular momentum = 
= Initial angular velocity = 14 rev/min
= Final angular momentum
= Final angular velocity
Here the angular momentum of the system is conserved

The final angular velocity is 0.2932 rad/s
Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
Answer:

Explanation:
As per Kepler's III law we know that time period of revolution of satellite or planet is given by the formula

now for the time period of moon around the earth we can say

here we know that


= mass of earth
Now if the same formula is used for revolution of Earth around the sun

here we know that


= mass of Sun
now we have




(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.
(b) The velocity of the rock after 2 seconds is 7.56 m/s.
(c) The time for the block to hit the surface is 4.03.
(d) The velocity of the block at the maximum height is 0.
<h3>
Velocity of the rock</h3>
The velocity of the rock is determined as shown below;
Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m
v² = u² - 2gh
where;
- g is acceleration due to gravity in mars = 3.72 m/s²
v² = (15)² - 2(3.72)(13.14)
v² = 127.23
v = √127.23
v = 11.28 m/s
<h3>Velocity of the rock when t = 2 second</h3>
v = dh/dt
v = 15 - 3.72t
v(2) = 15 - 3.72(2)
v(2) = 7.56 m/s
<h3>Time for the rock to reach maximum height</h3>
dh/dt = 0
15 - 3.72t = 0
t = 4.03 s
<h3>Velocity of the rock when it hits the surface</h3>
v = u - gt
v = 15 - 3.72(4.03)
v = 0
Learn more about velocity at maximum height here: brainly.com/question/14638187