1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
10

An experiment is conducted such that an applied force is exerted on a 5kg object as it travels across a horizontal surface in wh

ich frictional forces are NOT considered to be negligible. A graph of the net force exerted on the object as a function of the object’s distance traveled is shown. How could a student use the graph to determine the net work done on the object?
Physics
2 answers:
Katen [24]3 years ago
5 0

If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.

The  graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.

  • A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m

For more information on work done, visit

brainly.com/subject/physics

iVinArrow [24]3 years ago
5 0

Answer:

D. There is not enough information that is known or can be obtained from the graph to determine the net work done on the object.

Explanation:

it’s the answer For Ap classroom

You might be interested in
What is the kinetic energy of a 9.0 kg steelhead if its speed is 16 m/s?
Vesnalui [34]

<u>We are given:</u>

Mass of the Steelhead(m) = 9 kg

Velocity of the Steelhead(v) = 16 m/s

<u>Calculating the Kinetic Energy:</u>

KE = 1/2mv²

replacing the variables

KE = 1/2 * 9 * (16)²

KE = 1152 Joules

8 0
3 years ago
A 15 kg box is sliding down an incline of 35 degrees. The incline has a coefficient of friction of 0.25. If the box starts at re
valina [46]

The box has 3 forces acting on it:

• its own weight (magnitude <em>w</em>, pointing downward)

• the normal force of the incline on the box (mag. <em>n</em>, pointing upward perpendicular to the incline)

• friction (mag. <em>f</em>, opposing the box's slide down the incline and parallel to the incline)

Decompose each force into components acting parallel or perpendicular to the incline. (Consult the attached free body diagram.) The normal and friction forces are ready to be used, so that just leaves the weight. If we take the direction in which the box is sliding to be the positive parallel direction, then by Newton's second law, we have

• net parallel force:

∑ <em>F</em> = -<em>f</em> + <em>w</em> sin(35°) = <em>m a</em>

• net perpendicular force:

∑<em> F</em> = <em>n</em> - <em>w</em> cos(35°) = 0

Solve the net perpendicular force equation for the normal force:

<em>n</em> = <em>w</em> cos(35°)

<em>n</em> = (15 kg) (9.8 m/s²) cos(35°)

<em>n</em> ≈ 120 N

Solve for the mag. of friction:

<em>f</em> = <em>µ</em> <em>n</em>

<em>f</em> = 0.25 (120 N)

<em>f</em> ≈ 30 N

Solve the net parallel force equation for the acceleration:

-30 N + (15 kg) (9.8 m/s²) sin(35°) = (15 kg) <em>a</em>

<em>a</em> ≈ (54.3157 N) / (15 kg)

<em>a</em> ≈ 3.6 m/s²

Now solve for the block's speed <em>v</em> given that it starts at rest, with <em>v</em>₀ = 0, and slides down the incline a distance of ∆<em>x</em> = 3 m:

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> ∆<em>x</em>

<em>v</em>² = 2 (3.6 m/s²) (3 m)

<em>v</em> = √(21.7263 m²/s²)

<em>v</em> ≈ 4.7 m/s

4 0
3 years ago
You run<br> completely around a 400m track in<br> 80s. What was your average velocity?
dalvyx [7]

Answer:

V=?

S=400m

t=80s

V=S/t

V=400/80

V=5m/sec

6 0
3 years ago
(2.437×10⁴)(6.5411 x 10^9)/(5.37x10^6). write in scientific notation​
Musya8 [376]

Answer:

the answee is

2.968456 ×10^7

4 0
3 years ago
Is there any change in the pressure of container filled with water when the volumed is increased
marshall27 [118]
Not really the volume of a container is simply length X width X depth so just how big the container unless the water is pressurized by some sort of weight or if the containers air pressure is lowered
7 0
3 years ago
Other questions:
  • The choices are
    14·1 answer
  • According to the _______ the amount of energy in the universe doesn't change.
    12·2 answers
  • What is the kinetic energy of a 26 kg eagle flying at an altitude of 65 m at a speed of 19 m/s?
    8·1 answer
  • Its mass is 20 grams, and its density is 7.87 g/cm3. What’s the larger cube’s volume?
    8·1 answer
  • How much heat is needed to raise the temperature of 100.0 g of water by 50.0°C? (Water’s specific heat is 4.18 J/g•°C)
    12·1 answer
  • Suppose that the electric field in the Earth's atmosphere is E = 8.60 101 N/C, pointing downward. Determine the electric charge
    14·1 answer
  • In 11.8 s, 151 bullets strike and embed themselves in a wall. The bullets strike the wall perpendicularly. Each bullet has a mas
    12·1 answer
  • You push against a wall and the wall pushes back on you.
    14·1 answer
  • Which disease do you think is most easily spread? 5 Answers
    11·1 answer
  • 2.2.4 Quiz: Conservation of Energy
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!