Answer:
Heat from the Sun causes water to evaporate from the surface of lakes and oceans. This turns the liquid water into water vapor in the atmosphere. Plants, too, help water get into the atmosphere through a process called transpiration! ... Water can also get into the atmosphere from snow and ice.
Most water vapor enters the atmosphere via evaporation and transpiration. Evaporation occurs when a single water molecule on a liquid water surface gains enough kinetic energy (often by solar radiation) to break the bond which holds the molecules together. Really Hopes this helps!
Explanation:
Hey!!
here is your answer >>>
We know that, acids and strong bases are good conductors of electricity!. And gold conducts electricity , while the best is silver and niext comes gold!. And H20 which is water contains less ions , so it is not a good conductors , it is a conductors but not a good conductor!. Salt in it's solid for cannot produce ions, hence, it cannot conduct electricity , but when this salt is mixed with water or when it is in it's molten state it can conduct electricity!. So now,the answer for the question is ,
B) III and IV only!.
Hope my answer helps!
Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.
Answer:
B) the change in momentum
Explanation:
Impulse is defined as the product between the force exerted on an object (F) and the contact time (
)

Using Newton's second law (F = ma), we can rewrite the force as product of mass (m) and acceleration (a):

However, the acceleration is the ratio between the change in velocity (
) and the contact time (
):
, so the previous equation becomes

And by simplifying
,

which corresponds to the change in momentum of the object.
I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.

