If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on. Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.
The speed of tsunami is a.0.32 km.
Steps involved :
The equation s = 356d models the maximum speed that a tsunami can move at. It reads as follows: s = 200 km/h d =?
Let's now change s to s in the equation to determine d: s = 356√d 200 = 356√d √d = 200 ÷ 356 √d = 0.562 Let's square the equation now by squaring both sides: (√d)² = (0.562) ² d = (0.562)² = 0.316 ≈ 0.32
As a result, 0.32 km is roughly the depth (d) of water for a tsunami moving at 200 km/h.
To learn more about tsunami refer : brainly.com/question/11687903
#SPJ4
Answer: I = 111.69 pA
Explanation: The hall effect is all about the fact that when a semiconductor is placed perpendicularly to a magnetic field, a voltage is generated which could be measured at right angle to the current path. This voltage is known as the hall voltage.
The hall voltage of a semiconductor sensor is given below as
V = I×B/qnd
Where V = hall voltage = 1.5mV =1.5/1000=0.0015V
I = current =?,
n= concentration of charge (electron density) = 5.8×10^20cm^-3 = 5.8×10^20/(100)³ = 5.8×10^14 m^-3
q = magnitude of an electronic charge=1.609×10^-19c
B = strength of magnetic field = 5T
d = thickness of sensor = 0.8mm = 0.0008m
By slotting in the parameters, we have that
0.0015 = I × 5/5.8×10^14 × 1.609×10^-19×0.0008
0.0015 = I×5/7.446×10^-8
I = (0.0015 × 7.446×10^-8)/5
I = 111.69*10^(-12)
I = 111.69 pA
B) droops.
Why?
To maintain balance, you do not need something short so you're balanced well... You need something long and droopy to maintain balance. The pole should be held by your waist and it should be light.
Hope this helps!~