Step 
In the right triangle ADB
<u>Find the length of the segment AB</u>
Applying the Pythagorean Theorem

we have

substitute the values



Step 
In the right triangle ADB
<u>Find the cosine of the angle BAD</u>
we know that

Step 
In the right triangle ABC
<u>Find the length of the segment AC</u>
we know that




solve for AC

Step 
<u>Find the length of the segment DC</u>
we know that

we have


substitute the values


Step 
<u>Find the length of the segment BC</u>
In the right triangle BDC
Applying the Pythagorean Theorem

we have

substitute the values



therefore
<u>the answer is</u>

(√3 + √11)² + (√3 - √11)²
- (a+b)² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
<em>Now </em><em>,</em>
(√3 + √11)² + (√3 - √11)²
(3 + 11 + 2√3√11)+ (3 +11 - 2√3√11)
14 + 2√33+ 14 - 2√33
14 + 14 = 28
Hence , The value of (√3 + √11)² + (√3 - √11)² is 28 .
Answer:
Original number we'll call "x".
2x + 14 = 17.2
x = 1.6
Step-by-step explanation:
Your answer is 3/8 , that’s your answer