Answer:
Q = 836.4 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Initial temperature = 25°C
Final temperature = 45°C
We know that the specific heat capacity of water is equal to 4.182 J/g°C.
To find the quantity of heat;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 45 - 25
dt = 20°C
Substituting the values into the equation, we have;
Q = 836.4 Joules.
The motion of an electric<span> charge producing a magnetic field is an essential concept in understanding magnetism. The magnetic moment of an atom can be the result of the electron's spin, which is the </span>electron orbital motion<span> and a change in the </span>orbital<span>motion of the electrons caused by an </span>applied<span> magnetic field.</span>
Answer:
The answer is "151.25 J and -547.64 J".
Explanation:

Using formula:

Calculating the Work by net force
The above work is converted into thermal energy.
Now,

Hi there!
We know that:
U (Potential energy) = mgh
We are given the potential energy, so we can rearrange to solve for h (height):
U/mg = h
g = 9.81 m/s²
m = 30 g ⇒ 0.03 kg
0.062/(0.03 · 9.81) = 0.211 m
Answer:
B. 9.0 V
Explanation:
In parallel circuits, the voltage across each circuit is the same across each component, which is also equal to the total voltage of the power supplied. So in this case, the voltage across each resistor is still 9.0V.
The voltage only changes when the resistors can connected in series.