Answer:
The correct option is;
B) 179 g
Explanation:
The parameters given are;
Mass of H₂ that takes part in the reaction = 2.23 g
Molar mass of hydrogen gas, H₂ = 2.016 g
Number of moles, n, of hydrogen gas H₂ is given by the relation;

Chemical equation for the reaction;
H₂ + Br₂ → 2HBr
Given that one mole of H₂ reacts with one mole of Br₂ to produce two moles of HBr
1.106 mole of H₂ will react with 1.106 mole of Br₂ to produce 2 × 1.106 which is 2.212 moles of HBr
The molar mass, of HBr = 80.91 g/mol
The mass of HBr produced = Molar mass of HBr × Number of moles of HBr
The mass of HBr produced = 80.91 × 2.212 = 178.997 g ≈ 179 grams
Therefore, the correct option is B) 179 g.
20.06 g of Hg and 1.6 g of O₂
<u>Explanation:</u>
To Find:
Number of Mercury and oxygen that can be obtained from 21.7 g of HgO
First we have to write the balanced equation for the decomposition reaction of Mercury(II) oxide as,
2 HgO (s) → 2Hg(l) + O₂ (g)
21.7 g of HgO =
= 0.1 mol of HgO.
As per the above equation, we can find the mole ratio between HgO and Hg is 1: 1 and that of HgO and oxygen is 2:1 .
So amount of Hg produced = 0.1 mol × 200.59 g / mol ( molar mass of Hg)
= 20.06 g of Hg
Amount of oxygen produced = 0.05 mol × 32 g/ mol = 1.6 g of O₂
Thus it is clear that 20.06 g of Hg and 1.6 g of O₂ is obtained from 21.7 g of HgO
Answer:
the type of drink they consumed each day
Answer:
The answer to your question is below
Explanation:
When we have the number of an element followed by a number, that number is the atomic mass.
Atomic mass is the number of protons plus neutrons.
Protons Neutrons
Carbon-13 6 13 - 6 = 7
Chromium-51 24 51- 24 = 27
Strontium-88 38 88 - 38 = 50
Boron-10 5 10 - 5 = 5