First, we determine the mass of each element from the data collected. We can get the mass of molybdenum Mo from the difference between the mass of crucible and molybdenum and the mass of crucible:
Mass of molybdenum = 39.52 – 38.26 = 1.26 g Mo
We can calculate for the mass of molybdenum oxide from the difference between the mass of crucible and molybdenum oxide and the mass of crucible:
Mass of molybdenum oxide = 39.84 – 38.26 = 1.58g
We can now compute for the mass of oxygen O by subtracting the mass of molybdenum from the mass of molybdenum oxide:
Mass of oxygen in molybdenum oxide = 1.58 – 1.26 = 0.32g O
To convert mass to moles, we use the molar mass of each element.
1.26 g Mo * 1 mol Mo / 95.94 g Mo = 0.0131 mol Mo
0.32 g O * 1 mol O / 15.999 g O = 0.0200 mol O
0.0131 mol is the smallest number of moles. We divide each mole value by this number:
0.0131 mol Mo / 0.0131 = 1
0.0200 mol O / 0.0131 = 1.53
Multiplying these results by 2 to get the lowest whole number ratio,
0.0131 mol Mo / 0.0131 = 1 * 2 = 2
0.0200 mol O / 0.0131 = 1.5 * 2 = 3
Thus, we can write the empirical formula as Mo2O3.
633.97 L
Explanation:
Well use the combined gas law;
P₁V₁T₁ = P₂V₂T₂
We need to change the temperatures into Kelvin;
18.9°C= 292.05 K
5.9°C = 279.05 K
756 * 512 * 292.05 = 639 * V₂ * 279.05
113,044,377.6 = 178,312.95 V₂
V₂ = 113,044,377.6 / 178,312.95
V₂ = 633.97 L
Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
It well be 9025 because it will dissolve in 0.8 hcl soluiton
However, Duncan has prepared ramen noodles so many times he does not need to measure the water carefully. If he happens to heat 0.850 ...