Answer:
Technician A
Explanation:
Ohms law: I= E/R so rest resistance must be present along with E/potential difference. Even if just wire shorted together there is resistance but very little.
Tech B: Again ohms law. Current flow is directly proportional to the voltage and inversely proportional to R (resistance or impedance).
Answer:
q=2313.04
T=690.86°C
Explanation:
Given that
Thickness t= 20 cm
Thermal conductivity of firebrick= 1.6 W/m.K
Thermal conductivity of structural brick= 0.7 W/m.K
Inner temperature of firebrick=980°C
Outer temperature of structural brick =30°C
We know that thermal resistance

These are connect in series

Heat transfer

So heat flux
q=2313.04
Lets temperature between interface is T
Now by equating heat in both bricks

So T=690.86°C
Algorithm of the Nios II assembly program.
- Attain data for simulation from the SW11-0, on the DE2-115 Simulator
- The data will be read from the switches in loop.
- The decimal output is displayed using the seven-segment displays and done using the loop.
- The program is ended by the user operating the SW1 switch
and
The decimal equivalent on the seven-segment displays HEX3-0 is
- DE2-115
- DE2-115_SW11
- DE2-115_HEX3
- DE2-115_HEX4
- DE2-115_HEX5
- DE2-115_HEX6
- DE2-115_HEX7
<h3>The Algorithm and
decimal equivalent on the
seven-segment displays HEX3-0</h3>
Generally, the program will be written using a cpulator simulator in order to attain best result.
We are to
- Attain data for simulation from the SW11-0, on the DE2-115 Simulator
- The data will be read from the switches in loop.
- The decimal output is displayed using the seven-segment displays and done using the loop.
- The program is ended by the user operating the SW1 switch
This will be the Algorithm of the Nios II assembly program .
Hence, the decimal equivalent on the seven-segment displays HEX3-0 is
- DE2-115
- DE2-115_SW11
- DE2-115_HEX3
- DE2-115_HEX4
- DE2-115_HEX5
- DE2-115_HEX6
- DE2-115_HEX7
For more information on Algorithm
brainly.com/question/11623795
Answer:
If a truss buckles or overturns, it is usually because of the failure of an adjacent truss or its bracing. A steel truss in a fire may buckle and overturn because of expansion or weakening from the heat. Most truss failures are the result of broken connections. Photo 1 shows a set of parallel-chord wood trusses supporting a plywood floor deck.
Explanation:
Answer:
Yes, it is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water that is entering at 20 °C because this temperature (20 °C) of the external cooling water is less than the saturation temperature of steam which is which is 45.81 °C, and heated by a boiler; as a result of this condition, coupled with the assumption that the turbine, pump, and interconnecting tube are adiabatic, and the condenser exchanges its heat with the external cooling river water, it possible to maintain a pressure of 10 kPa.