1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
12

A reversible refrigerator operates between a low temperature reservoir at TL and a high temperature reservoir at TH . Its coeffi

cient of performance is given by
Engineering
1 answer:
Anna11 [10]3 years ago
7 0

Answer

TL/TH- TL

Because we know that power coefficient is. = QL/QH-QL

=so using this for performance we have

=>Perf= TL/(TH-TL)

You might be interested in
(Practice work, not graded)
luda_lava [24]

Answer: ALL CAREFULLY ANSWERED CORRECTLY.

Explanation:

1) A loaf of Bread PHYSICAL SYSTEM

✓ How can the environment affect the edibility of the bread

✓ What are the constituents that makes up the bread

✓ What process is involved in these constituents mixing to form the loaf.

2) The law of thermodynamics makes us to understand that when heat/energy passes through a system, the systems internal energy changes with respect to the conservation of energy law. That is energy lost = energy gained. Typically, ice would melt in a cup of hot tea because of the thermal energy in the molecules of the hot tea. When you heat a material, you are adding thermal kinetic energy to its molecules and usually raising its temperature. The temperature of the ice raises due to the kinetic energy added to it and it melts to water.

3) The theory of systems view the world as a complex system of interconnected parts. If we consider the society; (financial systems, political systems, etc) we will agree that they individually have their own components and it's the summation of this components that makes the system, this implies that system thinking could be applicable in this kinda of systems as long as they are made up of components.

4) Technology has boosted every sector of our lives and it has the capacity to do more. Restricting it's importance to entertainment alone would be an underusing of its potentials. Engineering students infact should not need any drive to be encouraged about maximizing all it can do in shaping our world.

5) ~ Nature shows its splendid soul

~Never ceases to leave us in amazement

~And we are in love

7 0
3 years ago
Implement the following Matlab code:
vagabundo [1.1K]
28384 *x soít cos estematema
3 0
3 years ago
A structural component in the shape of a flat plate 25.0 mm thick is to be fabricated from a metal alloy for which the yield str
balandron [24]

Answer:

The critical length of surface flaw = 6.176 mm

Explanation:

Given data-

Plane strain fracture toughness Kc = 29.6 MPa-m1/2

Yield Strength = 545 MPa

Design stress. =0.3 × yield strength

= 0.3 × 545

= 163.5 MPa

Dimensionless parameter. Y = 1.3

The critical length of surface flaw is given by

= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2

Now putting values in above equation we get,

= 1/3.14( 29.6 / 1.3 × 163.5)^2

=6.176 × 10^-3 m

=6.176 mm

5 0
3 years ago
Read 2 more answers
A cyclic tensile load ranging from 0 kN to 55 kN force is applied along the length of a 100 mm long bar with a 15 mm x 15 mm squ
Yuliya22 [10]

Answer:

square cross section. The bar is made of a 7075-T6 aluminum alloy which has a yield strength of 500 MPa, a tensile strength of 575 MPa, and a fracture toughness of 27.5 MPaâm.

Required:

a. What is the nominal maximum tensile stress on the bar?

b. If there were an initial 1.2 mm deep surface crack on the right surface of the bar, what would the critical stress needed to cause instantaneous fast fracture of the bar be?

7 0
3 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Other questions:
  • In a cellular phone system, a mobile phone must be paged to receive a phone call. However, paging attempts don’t always succeed
    11·1 answer
  • A strain gauge with a 5 mm gauge length gives a displacement reading of 1.25 um. Calculate the stress value given by this displa
    15·1 answer
  • Which are the most common location for a collision between a bike and a car?
    8·1 answer
  • A water skier leaves the end of an 8 foot tall ski ramp with a speed of 20 mi/hr and at an angle of 250. He lets go of the tow r
    5·1 answer
  • You are designing a geartrain with three spur gears: one input gear, one idler gear,and one output gear. The diametral pitch for
    13·1 answer
  • What are the partial products of 2.3 x 2.6
    15·1 answer
  • How can feeding plant crops to animals be considered an efficient use of those crops?
    6·1 answer
  • What is considered the greatest engineering achievement of the 20th century?
    10·1 answer
  • All of the following are drum brake components mounted to the backing plate, EXCEPT:
    12·1 answer
  • One of the key characteristics of ________ sessions is that no idea should be immediately accepted or rejected. prototype alpha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!