1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
12

A reversible refrigerator operates between a low temperature reservoir at TL and a high temperature reservoir at TH . Its coeffi

cient of performance is given by
Engineering
1 answer:
Anna11 [10]3 years ago
7 0

Answer

TL/TH- TL

Because we know that power coefficient is. = QL/QH-QL

=so using this for performance we have

=>Perf= TL/(TH-TL)

You might be interested in
Which of these are not included as part of a drivetrain
Zielflug [23.3K]

Answer:

transmission, driveshafts, differential and axles

Explanation:

The powertrain consists of the prime mover (e.g. an internal combustion engine and/or one or more traction motors) and the drivetrain - all of the components that convert the prime mover's power into movement of the vehicle (e.g. the transmission, driveshafts, differential and axles); whereas the drivetrain does not.

7 0
3 years ago
• ¿Qué les reclamó Dios al pueblo?<br> • ¿Qué consecuencias hubo?
HACTEHA [7]

a quien alos israelitas

8 0
3 years ago
What information you would gain by watching the video. Plz Help due today.
Archy [21]

Answer: It doesnt let me watch the link im sorry :(

Explanation:

3 0
2 years ago
Refrigerant 134a enters an air conditioner compressor at 4 bar, 208C, and is compressed at steady state to 12 bar, 808C. The vol
SCORPION-xisa [38]

Answer:

heat transfer rate is -15.71 kW

Explanation:

given data

Initial pressure  = 4 bar

Final pressure  = 12 bar

volumetric flow rate = 4 m³ / min

work input to the compressor = 60 kJ per kg

solution

we use here super hated table for 4 bar and 20 degree temperature and 12 bar and 80 degree is

h1 = 262.96 kJ/kg

v1 = 0.05397 m³/kg

h2 = 310.24 kJ/kg

and here mass balance equation will be

m1  = m2

and mass flow equation is express as

m1 = \frac{A1\times V1}{v1}       .......................1

m1 = \frac{4\times \frac{1}{60}}{0.05397}  

m1 = 1.2353 kg/s

and here energy balance equation is express as

0 = Qcv - Wcv + m × [ ( h1-h2) + \frac{v1^2-v2^2}{2} + g (z1-z2) ]      ....................2

so here Qcv will be

Qcv =  m × [  \frac{Wcv}{m} + (h2-h1)  ]    ......................3

put here value and we get

Qcv =  1.2353 × [ {-60}+ (310.24-262.96) ]

Qcv =  -15.7130 kW

so here heat transfer rate is -15.71 kW

6 0
3 years ago
An incompressible fluid flows between two infinite stationary parallel plates. The velocity profile is given by u=umaxðAy2 + By+
nexus9112 [7]

Answer:

the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

Explanation:

From the question; the  equations of the velocities profile in the system are:

u = u_{max}(Ay^2+By+C)   ----- equation (1)

The above boundary condition can now be written as :

At y= 0; u =0           ----- (a)

At y = h; u =0            -----(b)

At y = \frac{h}{2} ; u = u_{max}     ------(c)

where ;

A,B and C are constant

h = distance between two plates

u = velocity

u_{max} = maximum velocity

y = measured distance upward from the lower plate

Replacing the boundary condition in (a) into equation (1) ; we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*0+B*0+C) \\ \\ 0=u_{max}C \\ \\ C= 0

Replacing the boundary condition (b) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ 0 = u_{max}(A*h^2+B*h+C) \\ \\ 0 = Ah^2 +Bh + C \\ \\ 0 = Ah^2 +Bh + 0 \\ \\ Bh = - Ah^2 \\ \\ B = - Ah   \ \ \ \ \   --- (d)

Replacing the boundary condition (c) in equation (1); we have:

u = u_{max}(Ay^2+By+C) \\ \\ u_{max}= u_{max}(A*(\frac{h^2}{2})+B*\frac{h}{2}+C) \\ \\ 1 = \frac{Ah^2}{4} +B \frac{h}{2} + 0 \\ \\ 1 =  \frac{Ah^2}{4} + \frac{h}{2}(-Ah)  \\ \\ 1=  \frac{Ah^2}{4}  - \frac{Ah^2}{2}  \\ \\ 1 = \frac{Ah^2 - Ah^2}{4}  \\ \\ A = -\frac{4}{h^2}

replacing A = -\frac{4}{h^2} for A in (d); we get:

B = - ( -\frac{4}{h^2})hB = \frac{4}{h}

replacing the values of A, B and C into the velocity profile expression; we have:

u = u_{max}(Ay^2+By+C) \\ \\ u = u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y)

To determine the volume flow rate; we have:

Q = AV \\ \\ Q= \int\limits^h_0 (u.bdy)

Replacing u_{max} (-\frac{4}{h^2}y^2+\frac{4}{h}y) \ for \ u

\frac{Q}{b} = \int\limits^h_0 u_{max}(-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\  \frac{Q}{b} = u_{max}  \int\limits^h_0 (-\frac{4}{h^2} y^2+\frac{4}{h}y)dy \\ \\ \frac{Q}{b} = u_{max} (-\frac{-4}{h^2}\frac{y^3}{3} +\frac{4}{h}\frac{y^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} =u_{max} (-\frac{-4}{h^2}\frac{h^3}{3} +\frac{4}{h}\frac{h^2}{y})^ ^ h}}__0  }} \\ \\ \frac{Q}{b} = u_{max}(\frac{-4h}{3}+\frac{4h}2} ) \\ \\ \frac{Q}{b} = u_{max}(\frac{-8h+12h}{6}) \\ \\ \frac{Q}{b} =u_{max}(\frac{4h}{6})

\frac{Q}{b} = u_{max}(\frac{2h}{3}) \\ \\ \frac{Q}{b} = \frac{2}{3} u_{max} h

Thus; the volume flow rate per unit depth is:

\frac{Q}{b} = \frac{2}{3} u_{max} h

Consider the discharge ;

Q = VA

where :

A = bh

Q = Vbh

\frac{Q}{b}= Vh

Also;  \frac{Q}{b} = \frac{2}{3} u_{max} h

Then;

\frac{2}{3} u_{max} h = Vh \\ \\ \frac{V}{u_{max}}=\frac{2}{3}

Thus; the ratio is : \frac{V}{u_{max}}=\frac{2}{3}

5 0
3 years ago
Other questions:
  • Is the ASUS ROG Strix B450-F Gaming amd ryzen 5 3600 ready?
    7·2 answers
  • A cylindrical metal specimen having an original diameter of 12.8 mm and gauge length of 50.80 mm is pulled in tension until frac
    9·1 answer
  • Someone claims that the shear stress at the center of a circular pipe during fully developed laminar flow is zero. Do you agree
    12·1 answer
  • In your opinion, what is the external opportunity cost of a successful biking company in a community
    7·1 answer
  • A closed system of mass 10 kg undergoes a process during which there is energy transfer by work from the system of 0.147 kJ per
    9·2 answers
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • Lets try to get to 100 sub before charismas day <br> Jordan Gracia 32 sub and 5 videos
    13·2 answers
  • Which material has the highest cp value?
    10·1 answer
  • Why does the compression-refrigeration cycle have a high-pressure side and a low-pressure side?
    7·1 answer
  • You guys want to talk at seven I am free then
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!