Answer:
The number of bright-dark fringe is 42
Solution:
As per the question:
Wavelength of light, 
Length of the glass cell, x = 3.73 cm = 0.0373 m
Refractive index, 
Now,
To calculate the bright-dark fringe shifts, we use the formula given below:

Now, substituting the appropriate values in the above formula:

≈ 42
Answer:
Option C = internal energy stays the same.
Explanation:
The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.
So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.
Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.
The amount of heat,q = Work,w.
In the concept of free expansion the only thing that changes is the volume.
Answer:
The net amount of energy change of the air in the room during a 10-min period is 120 KJ.
Explanation:
Given that
Heat loss from room (Q)= 60 KJ/min
Work supplied to the room(W) = 1.2 KW = 1.2 KJ/s
We know that 1 W = 1 J/s
Sign convention for heat and work:
1. If heat is added to the system then it is taken as positive and if heat is rejected from the system then it is taken as negative.
2. If work is done by the system then it is taken as positive and if work is done on the system then it is taken as negative.
So
Q = -60 KJ/min
In 10 min Q = -600 KJ
W = -1.2 KJ/s
We know that
1 min = 60 s
10 min = 600 s
So W = -1.2 x 600 KJ
W = -720 KJ
WE know that ,first law of thermodynamics
Q = W + ΔU
-600 = - 720 + ΔU
ΔU = 120 KJ
The net amount of energy change of the air in the room during a 10-min period is 120 KJ.