Answer:
a, b
Explanation:
Electrolytes dissociate to make ions, because of it they conduct electricity.
Answer:
The pH of the solution is 4.60.
Explanation:
The pH gives us an idea of the acidity or basicity of a solution. More precisely, it indicates the concentration of H30 + ions present in said solution. The pH scale ranges from 0 to 14: from 0 to 7 corresponds to acid solutions, 7 neutral solutions and between 7 and 14 basic solutions. It is calculated as:
pH = -log (H30 +)
pH= -log (2,5 x 10-5)
<em>pH=4.60</em>
There are 12<span> protons and </span>10<span> electrons in a </span><span>Mg<span>2+</span></span><span> ion, the normal amount of neutrons is </span>12<span>.</span>
The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<h3>What is the value of Van t Hoff factor?</h3>
For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
<h3>Which has highest Van t Hoff factor?</h3>
The Van't Hoff factor will be highest for
A. Sodium chloride.
B. Magnesium chloride.
C. Sodium phosphate.
D. Urea.
Learn more about van't off factor here:
<h3>
brainly.com/question/22047232</h3><h3 /><h3>#SPJ4</h3>
<h3><u>Answer;</u></h3>
Empirical formula = C₂H₃O
Molecular formula = C₁₄H₂₁O₇
<h3><u>Explanation</u>;</h3>
Empirical formula
Moles of;
Carbon = 55.8 /12 = 4.65 moles
Hydrogen = 7.04/ 1 = 7.04 moles
Oxygen = 37.16/ 16 = 2.3225 moles
We then get the mole ratio;
4.65/2.3225 = 2.0
7.04/2.3225 = 3.0
2.3225/2.3225 = 1.0
Therefore;
The empirical formula = <u>C₂H₃O</u>
Molecular formula;
(C2H3O)n = 301.35 g
(12 ×2 + 3× 1 + 16×1)n = 301.35
43n = 301.35
n = 7
Therefore;
Molecular formula = (C2H3O)7
<u> = C₁₄H₂₁O₇</u>