Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have

Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have

The block's speed is 31.422 cm/s
The U.S. Environmental Protection Agency (EPA) standard for nitrate in drinking water is 10 milligrams of nitrate (measured as nitrogen) per liter of drinking water (mg/L). * Drinking water with levels of nitrate at or below 10 mg/L is considered safe for everyone.
Answer:
The work done by the drag force is given by 29.96 J
Explanation:
Given :
Thrust force
N
Displacement
m
Mass of rocket
Kg
From work energy theorem,


Where
thrust work
gravitational work

After cutoff kinetic energy is converted into potential energy,

Put value of KE

Work done by drag force is given by,

J
Therefore, the work done by the drag force is given by 29.96 J
Answer:
60.025m.
Explanation:
S= ut + at^2/2 (2nd equation of motion)
S= 0 + (9.8)(3.5)^2 /2 (free fall case, initial velocity = 0)
S = 4.9 x 12.25
S= 60.025 m.
Disclaimer: did math in my head, so you better double check with a calculator.
Acceleration is given by:

where
v is the final velocity
u is the initial velocity
t is the time interval
Let's apply the formula to the different parts of the problem:
A) 
Let's convert the quantities into SI units first:


t = 4.0 min = 240 s
So the acceleration is

B) 
As before, let's convert the quantities into SI units first:


t = 94 s
So the acceleration is

C) 
For this part we have to use a different formula:

where we have
v = 0 is the final velocity
u = 89.2 m/s is the initial velocity
a is the acceleration
d = 75 m is the distance covered
Solving for a, we find
