<h2>~<u>Solution</u> :-</h2>
- Here, the <u>moment arm</u> is defined as follows;
The magnitude of two forces, which when acting at right angle produce resultant force of VlOkg and when acting at 60° produce resultant of Vl3 kg. These forces are D. gravitational force of attraction towards the centre of the earth. A sample of metal weighs 219 gms in air, 180 gms in water, 120 gms in an <em>unknown fluid</em>.

Answer:
In the words of Hartshorn and Alexander: “Economic Geography is the study of the spatial variation on the earth’s surface of activities related to producing, exchanging and consuming goods and services. Whenever possible the goal is to develop generalizations and theories to account for these spatial variations.”
Explanation:
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.