Answer:
Actually it's 2.50 m/s, sorry
Explanation:
It is solved by using momentum conservation equation
combined mass of crow and feeder = 450+670=1120 gm
let the recoil speed of feeder be v m/s
Then applying momentum conservation we get;
1120×1.5 = 670×v
v= 2.50 m/s
the speed at which the feeder initially recoils backwards = 2.50 m/s
Answer:
The charge of an element is equal to the number of protons minus the number of electrons. The number of protons is equal to the atomic number of the element given in the periodic table. The number of electrons is equal to the atomic number minus the charge of the atom.
Explanation:
The variable is qualitative,
the quantitative variables are those that can be specified by a numeric value.
Answer: It would be 12 m/s.
Explanation: It would be this because If you go from rest to sprint it would be 12 m/s. Also, I did this the other day.
The computation would be:moles = mass/ Molar Mass, but we are looking for the mass, so rearranging, will give us: mass = moles x MM
Q = moles x Hf
Q = (mass/MM) x Hf
mass = (Q x MM) / Hf
= (1.50-kJ x 18.0-g/mol) / 6.01-kJ/mol
=4.49 g H20 is the answer