Answer:
0.554M of Calcium Bromide
Explanation:
Molarity by defintion is #of moles of something/litres of solution.
Therefore, here, we have 0.277 moles of calcium bromide and 500mL (divide 500ml by 1000 to go from mL to L because for every 1L there's 1000mL) or 0.5L.
Molarity= 0.277/0.5 = 0.554M of Calcium Bromide
Answer:
The product of aerobic respiration is Carbon dioxide.
Explanation:
- The process of breaking down glucose to produce energy and waste products is called respiration. Livings beings need respiration process to generate energy so that they can survive.
- The types of respiration are : Anaerobic and aerobic respiration.
- Aerobic respiration takes place in presence of oxygen and produces large amount of energy.
- The final product of aerobic respiration are carbon dioxide, water and 38 ATP of energy.
<span>(15.0 g) / (150.0 g) x (100 g) = 10.0 g/100 g H2O </span>
The empirical formula is the simplest formula attainable while maintaining the ratio so it will be CH2.
Explanation:
The empirical formula of a chemical compound is the simplistic positive integer ratio of atoms being in a compound. A simple example of this thought is that the empirical formula of sulfur monoxide, or SO, would simply be SO, as is the empirical formula of disulfur dioxide, S2O2.
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>