Answer:
12.7 mol
Explanation:
<em>A chemist measures the amount of fluorine gas produced during an experiment. He finds that 482. g of fluorine gas is produced. Calculate the number of moles of fluorine gas produced.</em>
Step 1: Given data
Mass of fluorine (m): 482. g
Step 2: Determine the molar mass (M) of fluorine
Fluorine is a diatomic molecule of chemical formula F₂. Its molar mass is:
mF₂ = 2 × mF = 2 × 19.00 g/mol = 38.00 g/mol
Step 3: Determine the number of moles (n) corresponding to 482. g of fluorine
We will use the following expression,.
n = m/M
n = 482. g/(38.00 g/mol)
n = 12.7 mol
Answer: Thus the volume of the balloon at that new location is 
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.995 atm
= final pressure of gas = 0.720 atm
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the volume of the balloon at that new location is 
Answer:75%
Explanation:
First, the balanced reaction equation must be written out clearly as a guide to solving the problem. The molar masses of H3PO4 and K3PO4 are then calculated as they will be consistently required in solving the problem. The theoretical yield is obtained from the amount of H3PO4 reacted. Since 1 mole of H3PO4 yields 1 mole of K3PO4, 0.05 moles of H3PO4 yields 0.05 moles of K3PO4. The mass of K3PO4 is produced is then the product of 0.05 and it molar mass hence the theoretical yield. The % yield is calculated as shown.
Answer:
refractors and reflectors
Explanation: