Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN
Answer:
6.0 m/s vertical and 9.0 m/s horizontal
Explanation:
For the vertical component, we use the formula:
- Sin(34°) = <em>y</em> / 10.8
Then we <u>solve for </u><u><em>y</em></u>:
- 0.559 = <em>y</em> / 10.8
And for the horizontal component, we use the formula:
- Cos(34°) = <em>x</em> / 10.8
Then we <u>solve for </u><u><em>x</em></u><u>:</u>
- 0.829 = <em>x</em> / 10.8
So the answer is " 6.0 m/s vertical and 9.0 m/s horizontal".
I think you would be using a topographic Map, So the answer should be A