<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
Answer:
5.82812 rad/s
Explanation:
L = Length of meter stick = 1 m = 100 cm
= The center of mass of the stick = 
= Angular velocity
Moment of inertia of the system is given by

As the energy in the system is conserved

The maximum angular velocity is 5.82812 rad/s
Answer:
Explanation:
Given
mass of lead piece 
mass of water in calorimeter 
Initial temperature of water 
Initial temperature of lead piece 
we know heat capacity of lead and water are
and
respectively
Let us take
be the final temperature of the system
Conserving energy
heat lost by lead=heat gained by water





Answer:
The velocity is
Explanation:
From the question we are told that
The mass of the ball is 
The radius is 
The force is 
The speed of the ball is 
Generally the kinetic energy at the top of the circle is mathematically represented as

=>
=>
Generally the work done by the force applied on the ball from the top to the bottom is mathematically represented as

Here d is the length of a semi - circular arc which is mathematically represented as

So


Generally the kinetic energy at the bottom is mathematically represented as

=> 
=> 
From the law of energy conservation

=> 
=>
As you move across a period, the atomic mass increases because the atomic number also increases. When the atomic number increases, this means that there are more protons and neutrons that add to the atomic mass of an atom