Impulse = change in momentum = F x dt
Where F is sufficiently large and dt is very small(tending to zero).
Therefore impulse = mass x final velocity - mass x initial velocity
= 975 x 3 - 975 x 0.5
= 2437.5 Kg-m/s.
Hence option C is correct.
Answer:
a) f = 4.76 10¹⁴ Hz, b) d = 2.73 10⁻⁴ m, c) θ = 6.923 10⁻³ rad
Explanation:
a) In this problem the frequency of light is asked, let's use the relationship between the speed of the wave, its wavelength and its frequency
c = λ f
f = c /λ
f =
f = 4.76 10¹⁴ Hz
b) slit separation (d)
the expression for the constructive interference of the double-slit experiment is
d sin θ = m λ
let's use trigonometry
tan θ = y / L
tan θ = 
in general the angles are small, so we can approximate
tan θ = sin θ
tan θ = y/L
we substitute
d y / L = m λ
d = m L λ / y
we calculate
d = 3 1.3 630 10⁻⁹ /0.90 10⁻²
d = 2.73 10⁻⁴ m
c) the angle
tan θ = y / L
θ = tan⁻¹ y / L
θ = tan⁻¹ 0.9 10⁻² / 1.3
θ = tan⁻¹ 6,923 10⁻³
let's find the angle in radians
θ = 6.923 10⁻³ rad
Answer:
(a) 24.56 N
(b) 142.28 N
Explanation:
(a)
The designation assigned to something like the net force pointed toward the middle including its circular route seems to be the centripetal force. The net stress only at lowest point constitutes of the strain throughout the arm projecting upward towards the middle as well as the weight pointed downwards either backwards from the center.
The centripetal function is generated from either scenario by Equation:
⇒ 
On putting the values, we get
⇒ 
⇒ 
(b)
Use T to denote whatever arm stress we can get at the bottom including its circle:
⇒ 
⇒ 
⇒ 
⇒ 
Sulfur is the element that has a pungent smell when it is burned.Sulfur is yellow in color and is a non-metal.