The question is incomplete. The complete question is :
A platypus foraging for prey can detect an electric field as small as 0.002 N/C.
-To give an idea of sensitivity of the platypus's electric sense, how far from a +80nC point charge does the field have this magnitude?
Solution :
Given electric field, E = 0.002 N/C
Charge, Q = + 80 nC
![$\therefore E = \frac{kQ}{R^2} $](https://tex.z-dn.net/?f=%24%5Ctherefore%20E%20%3D%20%5Cfrac%7BkQ%7D%7BR%5E2%7D%20%24)
or ![$R^2=\frac{kQ}{E}$](https://tex.z-dn.net/?f=%24R%5E2%3D%5Cfrac%7BkQ%7D%7BE%7D%24)
![$R^2=\frac{9\times 10^9 \times 80 \times 10^{-9}}{0.002}$](https://tex.z-dn.net/?f=%24R%5E2%3D%5Cfrac%7B9%5Ctimes%2010%5E9%20%5Ctimes%2080%20%5Ctimes%2010%5E%7B-9%7D%7D%7B0.002%7D%24)
R = 600 m
This is the distance of the charge from the point of observations.
(C)
Explanation:
![t = 2\pi \sqrt{ \frac{l}{g} }](https://tex.z-dn.net/?f=t%20%3D%202%5Cpi%20%5Csqrt%7B%20%5Cfrac%7Bl%7D%7Bg%7D%20%7D%20)
If g is only 1/6 on another planet, then
![t = 2\pi \sqrt{ \frac{l}{ \frac{g}{6} } } = 2\pi \sqrt{ \frac{6l}{g} }](https://tex.z-dn.net/?f=t%20%3D%202%5Cpi%20%5Csqrt%7B%20%5Cfrac%7Bl%7D%7B%20%5Cfrac%7Bg%7D%7B6%7D%20%7D%20%7D%20%3D%20%202%5Cpi%20%5Csqrt%7B%20%5Cfrac%7B6l%7D%7Bg%7D%20%7D%20)
![= \sqrt{6} \: (2\pi \sqrt{ \frac{l}{g} } ) = 2.4 \times t(on \: earth)](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%7B6%7D%20%5C%3A%20%282%5Cpi%20%5Csqrt%7B%20%5Cfrac%7Bl%7D%7Bg%7D%20%7D%20%29%20%3D%202.4%20%20%5Ctimes%20t%28on%20%5C%3A%20earth%29)
The unit used to measure wavelength is a Nano-meter
Answer:
14.4kJ
Explanation:
Work = Force x distance
W × h = mgh
Given that,
mass m, = 59.5kg
acceleration due to gravity = 9.8m/s^2
height ,h = 16.2cm
convert to m is 0.162m
How much work = m x g x h
height is 0.162 x 152 steps
h = 24.624m
work = 59.5 x 9.8 x 24.624
= 14,358.25Joule
= 14.4kJ