Answer:
<em>Its speed will be 280 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the speed of an object changes by an equal amount in every equal period of time.
If a is the constant acceleration, vo the initial speed, vf the final speed, and t the time, vf can be calculated as:

The object accelerates from rest (vo=0) at a constant acceleration of
. The final speed at t=35 seconds is:


Its speed will be 280 m/s
Answer:
E
Explanation:
They will boil at the same temperature.
And remember Christ loves you and
Jesus is coming back soon get right with Christ please
Answer:
KE = 2.03 J
Explanation:
After impact, the kinetic energy of the bullet+block will convert to potential energy
½mv² = mgh
v = √(2gh) = √(2(9.81)(0.00500) = 0.0981 m/s
conservation of momentum during the collision
0.015u + 2.50(0) = (2.50 + 0.015)(0.0981)
u = 16.4481 m/s
KE = ½mv² = ½(0.015)16.4481² = 2.0290499...
KE = 2.03 J
Let M = mass of the skier,
v2 = his speed at the end of the track.
By conservation of energy,
1/2 Mv^2 = 1/2 Mv2^2 + Mgh
Dividing by M,
1/2 v^2 = 1/2 v2^2 + gh
Multiplying by 2,
v^2 = v2^2 + 2gh
Or v2^2 = v^2 - 2gh
Or v2^2 = 4.8^2 - 2 * 9.8 * 0.46
Or v2^2 = 23.04 - 9.016
Or v2^2 = 14.024 m^2/s^2-----------------------------(1)
In projectile motion, launch speed = v2
and launch angle theta = 48 deg
Maximum height
H = v2^2 sin^2(theta)/(2g)
Substituting theta = 48 deg and value of v2^2 from (1),
H = 14.024 * sin^2(48 deg)/(2 * 9.8)
Or H = 14.024 * 0.7431^2/19.6
Or H = 14.024 * 0.5523/19.6
Or H = 0.395 m = 0.4 m after rounding off
Ans: 0.4 m
The answer in this question is 0.4 m