To solve this, you can first solve each expression:
35 / 6 = 5.83333
5 + 3/10 = 5.3
5 = 5
35 / 10 = 3.5
15 / 5 = 5
5 + 5/6 = 5.8333333
3 = 3
10 * 1/2 = 5
So, the tiles of 5, 15*1/5, and 10*1/2 all equal 5.
The tiles of 35/6 and 5+5/6 equal 5.83333.
The remaining tiles to not have matches.
Answer:
Y - 3 - X = 0
Step-by-step explanation:
The points are (0,3)
Step-by-step explanation:
![A=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D)
![C=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]](https://tex.z-dn.net/?f=C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D)
![D=\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]](https://tex.z-dn.net/?f=D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D)
![1.\\A+B=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]+\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]=\left[\begin{array}{ccc}3+4&1+1\\5+6&7+0\end{array}\right]=\left[\begin{array}{ccc}7&2\\11&7\end{array}\right]](https://tex.z-dn.net/?f=1.%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%2B4%261%2B1%5C%5C5%2B6%267%2B0%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%262%5C%5C11%267%5Cend%7Barray%7D%5Cright%5D)
![2.\\B-A=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]-\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]=\left[\begin{array}{ccc}4-3&1-1\\6-5&0-7\end{array}\right]=\left[\begin{array}{ccc}1&0\\1&-7\end{array}\right]](https://tex.z-dn.net/?f=2.%5C%5CB-A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-3%261-1%5C%5C6-5%260-7%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%26-7%5Cend%7Barray%7D%5Cright%5D)
![3.\\3C=3\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]=\left[\begin{array}{ccc}(3)(-2)&(3)(3)&(3)(1)\\(3)(-1)&(3)(0)&(3)(4)\end{array}\right]=\left[\begin{array}{ccc}-6&9&3\\-3&0&12\end{array}\right]](https://tex.z-dn.net/?f=3.%5C%5C3C%3D3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%283%29%28-2%29%26%283%29%283%29%26%283%29%281%29%5C%5C%283%29%28-1%29%26%283%29%280%29%26%283%29%284%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%269%263%5C%5C-3%260%2612%5Cend%7Barray%7D%5Cright%5D)
![4.\\C\cdot D=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]\cdot\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]\\\\=\left[\begin{array}{ccc}(-2)(-2)+(3)(0)+(1)(3)&(-2)(3)+(3)(-2)+(1)(4)&(-2)(4)+(3)(1)+(1)(-1)\\(-1)(-2)+(0)(0)+(4)(3)&(-1)(3)+(0)(-2)+(4)(4)&(-1)(4)+(0)(1)+(4)(-1)\end{array}\right]\\=\left[\begin{array}{ccc}7&-8&-6\\14&13&-8\end{array}\right]](https://tex.z-dn.net/?f=4.%5C%5CC%5Ccdot%20D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-2%29%28-2%29%2B%283%29%280%29%2B%281%29%283%29%26%28-2%29%283%29%2B%283%29%28-2%29%2B%281%29%284%29%26%28-2%29%284%29%2B%283%29%281%29%2B%281%29%28-1%29%5C%5C%28-1%29%28-2%29%2B%280%29%280%29%2B%284%29%283%29%26%28-1%29%283%29%2B%280%29%28-2%29%2B%284%29%284%29%26%28-1%29%284%29%2B%280%29%281%29%2B%284%29%28-1%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-8%26-6%5C%5C14%2613%26-8%5Cend%7Barray%7D%5Cright%5D)

When the dilation is centered on the origin, you can multiply each of the individual coordinates by the scale factor.
All the coordinates are ±5 and the scale factor is 1/5. Multiplying those gives ±1. The only selection with all coordinates being ±1 is
.. Selection A.
You can check to see if the signs agree in detail. (They do.)
The answer is b associative property