1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
12

Calculate the wavelength of each frequency of electromagnetic radiation: a. 100.2 MHz (typical frequency for FM radio broadcasti

ng) b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures) c. 835.6 MHz (common frequency used for cell phone communication)
Physics
1 answer:
Natalka [10]3 years ago
6 0

Answer:

a). 100.2 MHz (typical frequency for FM radio broadcasting)

The wavelength of a frequency of 100.2 Mhz is 2.99m.

b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)

The wavelength of a frequency of 1070 khz is 280.3 m.

c. 835.6 MHz (common frequency used for cell phone communication)

The wavelength of a frequency of 835.6 Mhz is 0.35m.

Explanation:

The wavelength can be determined by the following equation:

c = \lambda \cdot \nu  (1)

Where c is the speed of light, \lambda is the wavelength and \nu is the frequency.  

Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave.

<em>a). 100.2 MHz (typical frequency for FM radio broadcasting)</em>

Then, \lambda can be isolated from equation 1:

\lambda = \frac{c}{\nu} (2)

since the value of c is 3x10^{8}m/s. It is necessary to express the frequency in units of hertz.

\nu = 100.2 MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 100200000Hz

But 1Hz = s^{-1}

\nu = 100200000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{100200000s^{-1}}

\lambda = 2.99 m

Hence, the wavelength of a frequency of 100.2 Mhz is 2.99m.

<em>b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)</em>

<em> </em>

\nu = 1070kHz . \frac{1000Hz}{1kHz} ⇒ 1070000Hz

But  1Hz = s^{-1}

\nu = 1070000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{1070000s^{-1}}

\lambda = 280.3 m

Hence, the wavelength of a frequency of 1070 khz is 280.3 m.

<em>c. 835.6 MHz (common frequency used for cell phone communication) </em>

\nu = 835.6MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 835600000Hz

But  1Hz = s^{-1}

\nu = 835600000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{835600000s^{-1}}

\lambda = 0.35 m

Hence, the wavelength of a frequency of 835.6 Mhz is 0.35m.

You might be interested in
James has a mass of 98 kg and Basma has a mass of 59 kg. James is running at 3.0 m/s, while Basma is running at 4.0 m/s.
masha68 [24]

(a) James has the most momentum which is 294 kgm/s.

(b) The resultant force acting on Basma is 90.78 N.

(c) The time taken for James to stop is 3.2 seconds.

<h3>Momentum of each person</h3>

Momentum of James: P = mv = 98 x 3 = 294 kgm/s

Momentum of Basma: P = mv = 59 x 4 = 236 kgm/s

<h3>Resultant force of Basma</h3>

F = ma = mv/t = P/t = 236/2.6 = 90.78 N

<h3>Time for James to stop</h3>

F = P/t

t = P/F

t = 294/90.78

t = 3.2 s

Learn more about momentum here: brainly.com/question/7538238

#SPJ1

4 0
2 years ago
Which of the following is an example of acceleration?
kompoz [17]

Answer:

B) a leaf blown from a tree by the wind

6 0
3 years ago
Read 2 more answers
Arrange the steps in order to describe what happens to a gas when it cools
QveST [7]

Answer:

when the gas cools it cools

Explanation:

6 0
2 years ago
What is the maximum value of the magnetic field at a<br> distance2.5m from a 100-W light bulb?
MA_775_DIABLO [31]

To solve this problem we will apply the concepts related to the intensity included as the power transferred per unit area, where the area is the perpendicular plane in the direction of energy propagation.

Since the propagation occurs in an area of spherical figure we will have to

I = \frac{P}{A}

I = \frac{P}{4\pi r^2}

Replacing with the given power of the Bulb of 100W and the radius of 2.5m we have that

I = \frac{100}{4\pi (2.5)^2}

I = 1.2738W/m^2

The relation between intensity I and E_{max}

I = \frac{E_max^2}{2\mu_0 c}

Here,

\mu_0 = Permeability constant

c = Speed of light

Rearranging for the Maximum Energy and substituting we have then,

E_{max}^2 = 2I\mu_0 c

E_{max}=\sqrt{2I\mu_0 c }

E_{max} = 2(1.2738)(4\pi*10^{-7})(3*10^8)

E_{max} = 30.982 V/m

Finally the maximum magnetic field is given as the change in the Energy per light speed, that is,

B_{max} = \frac{E_{max}}{c}

B_{max} = \frac{30.982 V /m}{3*10^8}

B_{max} = 1.03275 *10{-7} T

Therefore the maximum value of the magnetic field is B_{max} = 1.03275 *10{-7} T

3 0
3 years ago
Y’all I have best describes the purpose of a bar graph
Sholpan [36]

so you can see all the different categories at once. both as a whole and on an individual scale.

3 0
3 years ago
Other questions:
  • Two rowers, who can row at the same speed in still water, head across a river. . . The first rower (Alice) heads straight across
    11·1 answer
  • Explain how you can use Boyle's law to determine the new volume of gas when its pressure is increased from 270kPa to 540kPa? The
    6·1 answer
  • An arrow is shot at 27.0° above the horizontal. Its velocity is 54 m/s, and it hits the target.
    8·1 answer
  • The electric potential V in the space between two flat parallel plates 1 and 2 is given (in volts) by V = 2200x2, where x (in me
    15·1 answer
  • What happens when sodium Hydroxide reacts with Hydrochloric acid?​
    15·2 answers
  • An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity c
    10·1 answer
  • ¿ Sobre que superficie se desplazara mas rápidamente un tejo, sobre cemento o sobre cerámica? ¿por que?
    11·1 answer
  • An airplane is moving at a speed of 75m/s as it lands on a runway. if the runway is 500 m long what is the acceleration of the p
    5·1 answer
  • A 40.0 kg beam is attached to a wall with a hi.nge and its far end is supported by a cable. The angle between the beam and the c
    14·1 answer
  • What is the displacement if a person traveled from point B to E?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!