Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2
Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.
Answer:
Yes! Light from the sun can affect the materials certain carpets are made out of. The usual effect being the dye in the carpet being "washed out" or "dried out" as the sun beams down on it. When this happens, the carpet will usually lose its color, causing it to fade.
(6) Wagon B is at rest so it has no momentum at the start. If <em>v</em> is the velocity of the wagons locked together, then
(140 kg) (15 m/s) = (140 kg + 200 kg) <em>v</em>
==> <em>v</em> ≈ 6.2 m/s
(7) False. If you double the time it takes to perform the same amount of work, then you <u>halve</u> the power output:
<em>E</em> <em>/</em> (2<em>t </em>) = 1/2 × <em>E/t</em> = 1/2 <em>P</em>
<em />
can't read it, need larger picture