Earth's tilted axis causes the seasons. Throughout the year, different parts of Earth receive the Sun's most direct rays. So, when the North Pole tilts toward the Sun, it's summer in the Northern Hemisphere. And when the South Pole tilts toward the Sun, it's winter in the Northern Hemisphere.
Answer:
7.0s
Explanation:
Mass = 0.41kg
F= 81N
t = 0.22s
¤ = 29°
Lo = 86m
From impulse equation,
F*t = m* v
81 * 0.22 = 0.41 * v
Vo = 17.82 / 0.41
Vo = 43.46m/s
Vx= velocity across horizontal plane
Vy = velocity across vertical plane
Vx = Vo * cos ¤
Vy = Vo * sin ¤
Vx = 43.46 * cos 30° = 37.64 m/s
Vy = 43.46 sin 30° = 21.73 m/s
Distance travelled across the vertical plane,
L = Lo + Vy *t + ½gt²
0 = 86 + 21.73t - 4.9t²
4.9t² - 21.73t - 86 = 0
Solving for t in the quadratic equation,
t = 6.96 or -10.04
Using the positive root since time can't be negative, t = 6.96 approximately 7.0s
I believe it is D. Earth spinning on it's axis.
The answer is D I’m not really sure yet
Answer:
a ) 2.368 rad/s
b) 3.617 rad/s
Explanation:
the minimum angular velocity that Prof. Stefanovic needs to spin the bucket for the water not to fall out can be determined by applying force equation in a circular path
i.e
------ equation (1)
where;


Also

since; that is the initial minimum angular velocity to keep the water in the bucket
Now; we can rewrite our equation as :

So; Given that:
The rope that is attached to the bucket is lm long and his arm is 75 cm long.
we have our radius r = 1 m + 75 cm
= ( 1 + 0.75 ) m
= 1.75 m
g = acceleration due to gravity = 9.81 m/s²
Replacing our values into equation (2) ; we have:

b) if he detaches the rope and spins the bucket by holding it with his hand ; then the radius = 0.75 m
∴
